
Published online: 5 October 2014

Steve C. Collins1, T. Colin E. Congdon2, Graham A. Henning3, Torben B. Larsen4 & Mark C. Williams5

1African Butterfly Research Institute, P O Box 14308, Nairobi 0800, Kenya. E-mail: collinsabri@gmail.com
2African Butterfly Research Institute, P O Box 14308, Nairobi 0800, Kenya. Email: colin.congdon@gmail.com (corresponding author)
317 Sonderend Street, Helderkruin 1724, Gauteng, South Africa. Email: safshenn@mweb.co.za
4Jacobsy alle 2, DK 1806 Fredriksberg, Denmark. Email: torbenlarsen@btinternet.com
5University of Pretoria, Gauteng, South Africa. Email: mark.williams@up.ac.za

Copyright © Lepidopterists’ Society of Africa

Abstract: Part III of the *Butterflies of the Afrotropical Region*, dealing with the Lycaenidae and Riodinidae, was published by d’Abrera in 2009. The text of this work has been reviewed in detail and in this, the third part of the review the taxonomic changes implemented or suggested by the author in the lycaenid subfamilies Theclinae, Polyommatinae and the family Riodinidae are assessed. Whilst many are accepted, others are reversed or revised. The authors have also made a few minor taxonomic revisions. A complete list of taxonomic changes is included as an Appendix.

Key words: d’Abrera, Libert, Cigaritis, Deudorix group, Hypolycaena, Iolaus, Oxylydes, Thermoniphas, Uranothauma, Abisara, Afrodinia.

INTRODUCTION

This is the third part of a review of Bernard d’Abrera’s *Butterflies of the Afrotropical Region – Part III* (second edition), 2009. The first part of the review (Collins et al. 2013) dealt with errors and omissions in the text. In the second part of the review the taxonomic changes (both formal and informal) made by d’Abrera were evaluated, dealing with the Miletinae and Poritiinae. Where the authors considered necessary the changes were reversed or emended. In this third and last part, the remaining subfamilies of the Lycaenidae and the Riodinidae are dealt with. Taxonomic changes made by the authors are scheduled in the Appendix.

Taxonomic hypotheses evolve as better evidence and methodology (for example molecular phylogenies), becomes available and some of the changes made herein may be subject to revision by better informed future authors. This article presents the taxonomic judgements of the present authors based on a careful review of all the published literature and other evidence to hand. In many instances d’Abrera produced no sound evidence to support his taxonomic views, and relied on his own personal judgement. However where he did produce evidence, this is examined and given full consideration.

FORMAL (VALID) TAXONOMIC CHANGES MADE BY D’ABRERA (2009)

The notes under this heading refer to formal taxonomic changes made by d’Abrera (2009). They are considered in the order in which they appear in the book, and for ease of reference, each entry is preceded by the page number(s) on which it appears.

Theclinae: Theclini

Oxylydes Hübner, 1819

697 *Oxylydes stempfferi* Berger, 1981 was treated as *Oxylydes faunus stempfferi* Berger, 1981 by Kielland (1990). It was recombined as *Oxylydes feminina stempfferi* Berger, 1981 by Libert (2004a). D’Abrera formally synonymised it with *Oxylydes feminina Sharpe*, 1904. Libert (op. cit.) describes in meticulous detail the differences between the two subspecies. In particular the blue discal areas of the upperside in the females of *O. f. stempfferi* are larger and brighter than those of *O. f. feminina*, while the males generally have more extensive white on the hindwing upperside. It therefore seems sensible to allow Libert’s interpretation to stand:

Oxylydes feminina stempfferi Berger, 1981 – **stat. rev.**
Theclinae: Aphnaeini

Cigaritis Donzel, 1848

702 Cigaritis gilletti (Riley, 1925) was formally downgraded and recombined as Apharitis acamas gilletti Riley, 1925 by d’Abrera (2009). This treatment was apparently suggested by Larsen. However, Hesselbarth et al. (1995: 453) synonymised Apharitis Riley, 1925 with Cigaritis Donzel, 1847 and Heath (1997) synonymised Apharitis Riley, 1925 with Spindasis Wallengren, 1857. Therefore Spindasis must be a synonym of Cigaritis, the latter being the senior genus by 10 years. The genera Spindasis Wallengren and Apharitis Riley were formally synonymised with the genus Cigaritis Donzel by Heath et al. (2002: vii, 90). Therefore, in view of the above, this must now be recombined:

Cigaritis acamas gilletti (Riley, 1925) – comb. nov.

Theclinae: Iolaini

737 Following the work of Heath (1985) and Larsen (2005) some order has been imposed on Iolaus. This will now enable a revision of this large and diverse assemblage. D’Abrera treats the subgenera of Iolaus as full genera. He does not, however, formalise his position. The subgenera Etesiolaus Stempffer & Bennett, 1959 and Stugeta Druce, 1891 were raised to generic level by Collins et al. (2003) and Larsen (op. cit.), respectively. The status of the remaining subgenera is in need of reassessment, but until this takes place, they retain their current status.

Stugeta Druce, 1891

752, 753 Stugeta umbrosa (Butler, 1886). This butterfly was originally described in the genus Hypolycaena, and was subsequently moved to Iolaus (vide Ackery et al., 1995). D’Abrera correctly moved it to Stugeta, on the grounds which he explained.

Iolaus Hübner, 1819

Iolaus (Epamera Druce, 1891)

746 Iolaus (Epamera) djalonii Collins & Larsen, 1998 was downgraded to a subspecies of Iolaus (Epamera) pollux Aurivillius, 1895 by d’Abrera (2009). The illustrations in Larsen (op. cit.: Plate 29) clearly demonstrate that this is not sustainable. On the undersides, the discal lines are straight in djalonii, curved in pollux. On the upperside forewing, the shape and extent of the black apical patch differs between the two species. The upperside of the female of djalonii is white, that of pollux is blue. These are good grounds for reinstating djalonii as a full species:

Iolaus (Argiolaus Druce, 1891)

The genitalia of members of the small Argiolaus subgenus (Fig. 1) are very similar and well characterized by the uncus that ends in two long processes, tapering to a point. There are tiny, undeveloped subunci. The genitalia are quite unlike any other subgenus within Iolaus.

The type species is Iolaus (Argiolaus) silas (Westwood, 1851), in addition to which Argiolaus contains three other species: Iolaus (Argiolaus) crawshayi (Butler, 1901); lalos (Druce, 1896); and silas (Druce, 1885).

Iolaus (Iolaphilus Stempffer & Bennett, 1958)

Typical members of the Iolaphilus have long narrow valves that are fused with the large fultura with two long, more or less rectangular lobes (Fig. 2). In one or two species these characters are not very evident.

In addition, the eggs and larvae of Iolaphilus are different from Argiolaus and Philiolaus, which have generally similar early stages. Based on their genitalia, we are now able to list the species of the three subgenera in their correct places, with the division made on the basis of genitalia; larval host plants as specified in the table by Larsen (op. cit.); and early stages mainly after Heath (op. cit.). The type species is Iolaus (Iolaphilus) menas Druce, 1890.

The following species are hereby transferred from Iolaphilus to Philiolaus Stempffer & Bennett, 1958: Iolaus (Philiolaus) aequatorialis Stempffer & Bennett,
Iolaphilus then remains with the following species:

Iolus (Iolaphilus) alexanderi Warren-Gash, 2003; caroliniae Collins & Larsen, 2000; gabunica (Riley, 1928); henryi Stempffer, 1961; iulus Hewitson, 1869; jamesoni (Druce, 1891); menas Druce, 1890; schultzei Aurivillius, 1905; trimeni Wallengren, 1875.

Iolus (Philiolaus) Stempffer & Bennett, 1958

D’Abrera (op. cit.) placed a number of species of *Philiolaus* in the wrong subgenera. Larsen has pointed out that the genitalia of *Iolaphilus* and *Argiolaus* differ from each other, and both differ strongly from *Philiolaus*. The three line-drawings reproduced here (Figs 1–3) are from the review of the genera of African Lycaenidae by Stempffer (1967), and illustrate the closely related *Philiolaus* from each other, and both differ strongly from *Philiolaus*.

The *Philiolaus* are a very varied group with few characters shared, but without the characters of the two previous subgenera (Fig. 3).

Some can be united in species-groups, but order will not be brought in the absence of a molecular phylogeny. Stempffer (op. cit.) placed only one species in the genus, but the revision by Larsen (op. cit.) moved a large number of species from *Iolaphilus* to this genus, as listed above. The type species is *Iolus (Philiolaus)* parasilanus Rebel, 1914.

758 *Iolus (Philiolaus) christofferi* Collins & Larsen, 2003 and *Iolus (Philiolaus) newporti* Larsen, 1994 can only be reliably separated from each other and the closely related *Iolus (Philiolaus) sansomereni* Stempffer & Bennett, 1958 by examination of the male genitalia. In the female, *christofferi* and *newporti* differ from *sansomereni* by the more extensive orange tornal patch on the hindwing undersides of that species. D’Abrera was unable to accept the differences in the genitalia as adequate grounds for separation of the species, but this is a view we do not share. The following taxa are therefore reinstated as good species:

D’Abrera (op. cit.) downgraded *Iolus (Philiolaus) mane* Collins & Larsen, 2003 to a subspecies of *Iolus (Philiolaus) aequatorialis* (Stempffer & Bennett, 1958). The most obvious difference between the taxa is the complete absence of a forewing underside submarginal band in both sexes of *mane*. We therefore reinstate *mane* as a good species:

Theclinae: Hypolycaenini

Hypolycaena Felder, C., 1862

764 *Hypolycaena hatita anara* Larsen, 1986 was raised to *Hypolycaena anara* Larsen, 1986 by Larsen & Mei (1998). It was formally downgraded, again, to *Hypolycaena hatita anara* Larsen, 1986 by d’Abrera. The reasons given in Larsen & Mei (1998), again by Collins and Larsen (1998: 82), and also by Larsen (2005) for raising *anara* to species status appear sound. *H. anara* is a savannah vicariant of the forest dwelling *H. hatita*. It is generally a smaller butterfly, the males are a lighter shade of blue, the ground colour of the female underside is duller, and the white areas more extensive. The underside is paler, and the discal lines narrower and of a lighter orange.

Theclinae: Deudoricini

D’Abrera (op. cit.) generally agreed with Libert’s revision of the *Deudorix* group of genera (2004c) as far as the genera *Virachola*, *Hypomyrina* and *Paradeudorix* were concerned, with the exception that Libert reduced *Virachola* to a subgenus of the Asian genus *Deudorix*. There is only one change that we would like to make amongst these genera.

Hypomyrina Druce, 1891

775 *Hypomyrina nomenia extensa* Libert, 2004 was synonymised with *H. nomenia* by d’Abrera (op. cit.: 775). This treatment may be allowed to stand, pending a molecular phylogeny of the group.
Hypokopelates

If we are to sustain Libert’s revision then published the names (and Hypokopelates 23 (a) and (d) of the Code the Priority of type species by original designation, and therefore journal. Each genus was correctly established with a reinstated sink as a junior synonym of it.”

Hypokopelates earlier name Pilodeudorix ICZN Article 23(a), (d] in selecting the name Hypokopelates, Actis and Diopetes.) ……..Drue published the names Hypokopelates (p. 364), Kopelates (p. 365) and Pilodeudorix (p. 366) together in the same journal. Each genus was correctly established with a type species by original designation, and therefore satisfies the Code for validity. …According to Article 23 (a) and (d) of the Code the Priority of Hypokopelates (and Kopelates) is obvious and irrevocable – therefore if we are to sustain Libert’s revision then Hypokopelates must prevail, and Pilodeudorix must sink as a junior synonym of it.”

Libert (pers. comm. to TCEC) has responded as follows:

“When I made the revision, I was well aware of a potential problem of priority between Hypokopelates and Pilodeudorix, and I did not elude the question, since I wrote (p. 16): “… three genera described by Druce (1891), in the same paper, Hypokopelates, Kopelates and Pilodeudorix (in that order).” I considered that Hypokopelates, which implicitly refers to Kopelates, was not an appropriate name, and I therefore deliberately selected Pilodeudorix, which also included most of the species.

I discussed the matter with several people. The Code does not say anywhere that preference must be given to the first described genus. The question is only evoked in Recommendation 69A.10, and not about genera or even species, but only about the nominal species.

Besides, as Article 89.2 of the Code clearly states: “Recommendations……do not form part of the legislative text of the Code”.

“In conclusion, there was no mistake in my opinion. Some may consider that it was not a good idea to select Pilodeudorix, but this decision is in accordance with the Code”.

Pending a resolution of the matter by a higher authority, and for the avoidance of even greater confusion, the authors have elected to accept Libert’s selection of Pilodeudorix as the preferred genus name.

D’Abrera (op. cit.) informally reinstated Kopelates Druce, 1891; Hypokopelates Druce, 1891 and Diopetes Karsch, 1895 as full genera.

In addition d’Abrera (op. cit.) formally erected the following new genera: Unikopelates d’Abrera, 2009, type species angelita (Suffert, 904); Strongylates d’Abrera, 2009, type species otraeda (Hewitson, 1863); and Rubropelates d’Abrera, 2009, type species aruma (Hewitson, 1873).

Parts of d’Abrera’s arrangement have merit. His Kopelates (mimeta, baginei, ula and virgata) are of similar appearance. His Unikopelates is erected for the very unusual angelita. The Strongylates species (otraeda, dimitris and leonina) have broad brown marginal bands, and the males have large androconial patches on the forewing. Diopetes with 15 species is another easily identifiable group, with characteristically rounded wings and figured undersides. By contrast, d’Abrera’s Hypokopelates are not readily separable from other species in the Pilodeudorix, and his Rubrokopelates differs only in the coloration of the male upperside.

Libert (op. cit.) on the other hand demonstrated that the genitalia of all these species are very similar, and on that basis he placed them all in the same genus.

Pending a much needed molecular phylogeny of the group, it is possible to maintain Libert’s single genus, while keeping the identity of the clades within the genus. In this work the authors accept Libert’s single genus, while according subgeneric status to d’Abrera’s groups of Kopelates, Unikopelates, Strongylates and Diopetes:

Pilodeudorix (Kopelates) d’Abrera, 2009 – stat. rev.

This arrangement results in the following:

Pilodeudorix mimeta (Karsch, 1895) was formally recombined as Kopelates mimeta Karsch, 1895 by d’Abrera (op. cit.: 776). This now becomes:

Pilodeudorix (Kopelates) mimeta (Karsch, 1895) comb. nov.

Pilodeudorix mimeta oreas Libert, 2004 was formally recombined as Kopelates mimeta oreas Libert, 2004 by d’Abrera (op. cit.: 776). This now becomes:

Pilodeudorix (Kopelates) mimeta oreas Libert, 2004. comb. nov.

Pilodeudorix mimeta angusta Libert, 2004 was formally recombined as Kopelates mimeta angusta Libert, 2004 by d’Abrera (op. cit.: 776). This now becomes:

Pilodeudorix (Kopelates) mimeta angusta Libert, 2004. comb. nov.

Pilodeudorix baginei (Collins & Larsen, 1991) was informally [he forgot this species!] recombined as Kopelates baginei Collins & Larsen, 1991 by d’Abrera (op. cit.: 776). This now becomes:

Pilodeudorix (Kopelates) baginei (Collins & Larsen, 1991). comb. nov.

Pilodeudorix ula (Karsch, 1895) was formally recombined as Kopelates ula Karsch, 1895 by d’Abrera (op. cit.: 776). This now becomes:
Pilodeudorix (Kopelates) ula (Karsch, 1895). **comb. nov.**

Pilodeudorix (Kopelates) (Druce, 1891) was informally recombined as Kopelates virgata Druce, 1891 by d’Abrera (op. cit.: 776). This now becomes:

Pilodeudorix (Kopelates) virgata (Druce, 1891). **comb. nov.**

D’Abrera (op. cit.) informally and therefore invalidly resurrected Hypokopelates Druce, 1891 to include mera Hewitson, 1873 and azurea Stempffer, 1964. These now revert to Pilodeudorix without the need for formal redesignation.

Unikopelates d’Abrera, 2009 was formally erected as a new genus by d’Abrera (op. cit.: 777). We now reduce Unikopelates d’Abrera, 2009 to a subgenus of Pilodeudorix Druce, 1891:

Pilodeudorix (Unikopelates) d’Abrera, 2009 – **stat. rev.**

This effects the following changes:

Pilodeudorix (Unikopelates) angelita (Suffert, 1904). **comb. nov.**

Pilodeudorix (Unikopelates) angelita schultzei (Aurivillius, 1907). **comb. nov.**

Strongylates d’Abrera, 2009 was formally erected as a new genus by d’Abrera (op. cit.: 777). We now reduce Strongylates d’Abrera, 2009 to a subgenus of Pilodeudorix Druce, 1891:

Pilodeudorix (Strongylates) d’Abrera, 2009 – **stat. rev.**

This results in the following changes:

Pilodeudorix (Strongylates) otraeda (Hewitson, 1863) – **comb. nov.**

Pilodeudorix (Strongylates) otraeda genuba (Hewitson, 1875) – **comb. nov.**

Pilodeudorix (Strongylates) leonina (Bethune-Baker, 1904) – **comb. nov.**

778 Pilodeudorix leonina dimitris (d’Abrera, 1980) was formally raised to Strongylates dimitris (d’Abrera, 1980) by d’Abrera (1980), advancing strong arguments for erecting dimitris as a species, which are accepted, but the name is recombined:

Pilodeudorix (Strongylates) dimitris (d’Abrera, 1980) – **comb. nov.**

778 Pilodeudorix leonina indentata Libert, 2004 was formally synonymised with Strongylates dimitris d’Abrera, 1980 by d’Abrera (2009), who expressed the view that indentata represents a blue form of the female of dimitris. The illustration of both taxa (Libert, op. cit.: plate V) show that this cannot be the case, and indentata must maintain its separate identity, although as an eastern subspecies of dimitris, and is therefore reinstated as:

Pilodeudorix (Strongylates) dimitris indentata Libert, 2004 – **stat. nov.**

Pilodeudorix (Rubropelates) d’Abrera, 2009

780 D’Abrera (op. cit.) formally erected Rubrokopelates as a new genus. As previously stated, d’Abrera’s Rubrokopelates differs from other members of the group solely in the coloration of the male upperside. Given the great variety of colours and patterns within Pilodeudorix (sensu Libert 2004c), and the similarity of the genitalia, we do not believe this to be justified, and make the following change:

Rubropelates d’Abrera, 2009 is synonymised with Pilodeudorix Druce, 1891 – **syn. nov.**

This results in the following name recombination:

Pilodeudorix aruma (Hewitson, 1873) – **comb. nov.**

Pilodeudorix (Diopetes) Karsch, 1895

782 Diopetes Karsch, 1895 was synonymised with Pilodeudorix by Libert (op. cit.) but was informally resurrected by d’Abrera as a full genus. We prefer subgenus status and therefore make the change:

Pilodeudorix (Diopetes) Karsch, 1895 – **stat. rev.**

This results in the following recombinations:

Pilodeudorix (Diopetes) deritas (Hewitson, 1874) – **comb. nov.**

Pilodeudorix (Diopetes) aucta (Karsch, 1895) – **comb. nov.**

Pilodeudorix (Diopetes) corruscans (Aurivillius, 1898) – **comb. nov.**

Pilodeudorix (Diopetes) violetta (Aurivillius, 1897) – **comb. nov.**

Pilodeudorix (Diopetes) laticlavia (Clench, 1965) – **comb. nov.**

Pilodeudorix (Diopetes) hugoi Libert, 2004 – **comb. nov.**

Pilodeudorix (Diopetes) bwamba (Stempffer, 1962) – **comb. nov.**

Pilodeudorix (Diopetes) catalla (Karsch, 1895) – **comb. nov.**

Pilodeudorix (Diopetes) ducarmeii (Collins & Larsen, 1998) – **comb. nov.**

Pilodeudorix (Diopetes) pseudoderitas (Stempffer, 1964) – **comb. nov.**

Pilodeudorix (Diopetes) aurivilliusi (Stempffer, 1954) – **comb. nov.**
Pilodeudorix (Diopetes) nyanzae Libert, 2004 – comb. nov.
Pilodeudorix (Diopetes) badhami (Carcasson, 1961) – comb. nov.
Pilodeudorix (Diopetes) fumata (Stempffer, 1954) – comb. nov.
Pilodeudorix (Diopetes) kiellandi (Congdon & Collins, 1998) – comb. nov.

Polyommatinae: Polyommatini

Lepidochrysops Hedicke, 1923

834 Lepidochrysops kocak Seven, 1997. [Replacement name for gigantea] was replaced by d’Abrera as Lepidochrysops permagnus d’Abrera, in the full knowledge that kocak is a legal name. Therefore permagnus is a nomen nudum:

Lepidochrysops permagnus d’Abrera, 2009 – nomen nudum.

Thermoniphas Karsch, 1895

841 Thermoniphas micylus colorata (Ungemach, 1932) was raised to full species Thermoniphas colorata by Larsen (op. cit.). D’Abrera reduced it back to a subspecies of micylus. Larsen (op. cit.) justified elevating colorata to full species on the basis that it has a narrowly defined distribution from coastal Ethiopia southwards to Mozambique, which is well separated from that of micylus in western Africa from Sierra Leone to Nigeria and just into western Cameroon. Kielland (1990) gave the distribution of colorata in Tanzania as Usambaras to Nguru Mts., Uluguru Mts., Pugu Hills, Ukaguru Mts., Mikumi and the Udzungwa Range to Masagati Forest and Ulanga District. These are very much eastern areas. It seems unlikely that it would be conspecific with micylus, despite their apparent similarity. D’Abrera (1980) remarks that specimens from Nigeria ‘are nearer to colorata than micylus’ while Larsen comments that “the extent of the blueish-grey area of the forewing [of the female] varies”. The disjunct distribution is all the more remarkable, given that five other species in the genus extend into the forests of western Tanzania, but are absent from the east. T. colorata is therefore restored to a full species:

Thermoniphas colorata (Ungemach, 1932) – stat. rev.

Riodinidae: Nemeobiinae

Afriodinia d’Abrera, 2009

Afriodinia was formally erected as a new genus by d’Abrera (op. cit.: 848) as “An Afrotropical genus of 11 species, related to the Oriental genus Abisara (19 species)”. The Afrotropical species (placed in the genus Abisara at the time) were reviewed by Callaghan (2003), and he states “All blue-banded species of Abisara have convex forewing inner margins covering the scent patches on the costa of the hindwing; in addition a single white-banded species (Abisara geronites) also has this convexity.” D’Abrera’s treatment needs the attention of a Riodinid specialist, pending which the new genus and new combinations proposed by Callaghan (op. cit.) must be allowed to stand.

INFORMAL (INVALID) TAXONOMIC CHANGES

These changes were made informally (invalidly) by d’Abrera (2009), and should therefore be ignored when establishing the correct names of the taxa concerned. The changes are listed in the order in which they appear in d’Abrera, and for ease of reference, each entry is preceded by the page number(s) on which it appears.

698 D’Abrera informally treats Syrmoptera nivea Joicey & Talbot, 1923 as a valid species without making any reference to Libert’s (2004b) treatment of the taxon as a subspecies of Syrmoptera melanomitra Karsch, 1895.

698 D’Abrera gives Syrmoptera mixtura (Hulstaert, 1924) as a synonym of Syrmoptera homeyerii (Dewitz, 1879) without formally changing its status vis-à-vis Libert’s (op. cit.) treatment of mixtura as a valid species.

702 The genus Paraphnaeus Thierry-Mieg, 1904 is regarded to be a synonym of Aphnaeus Hübner, 1819 by Stempffer (1954: 516), Heath (1997) and Heath & Pringle (2011: 3). Without referring to any of the three references cited above, d’Abrera, despite expressing reservations in regard to the validity of Paraphnaeus, proceeds to informally validate it by placing Paraphnaeus hutchinsonii (Trimen, 1887) in the genus. He also misspells the name of the species as hutchinsoni.

700 Aphnaeus carcassoni Larsen, 1986 was synonymised with Aphnaeus herbuloti Stempffer, 1972 by Bouyer (1996). D’Abrera avers that carcassoni Larsen, 1982 [sic] may be a synonym of brahami Lathy, 1903. However, he appears to have been unaware that Bouyer (op. cit.) had already synonymised carcassoni Larsen, 1986 with herbuloti Stempffer, 1972. Confusingly, in addition, d’Abrera lists carcassoni Larsen, 1986 as a valid species.

702 Aphnaeus williamsi Car casson, 1964 was treated as a subspecies of Aphnaeus flavescens Stempffer, 1954 by Ackery et al. (op. cit.: 555) but was re-instated as Aphnaeus williamsi Car casson, 1964 by Bouyer (op. cit.). D’Abrera invalidly treats williamsi Car casson, 1964 as a subspecies of Aphnaeus flavescens Stempffer, 1954, apparently being unaware that Bouyer (op. cit.) had formally raised it to species level.

702 Hesselbarth et al. (1995) synonymised Apharitis Riley, 1925 with Cigaritis Donzel, 1847 and Heath (1997) synonymised Apharitis Riley, 1925 with Spindasis Wallengren, 1857. Therefore, Spindasis must be a synonym of Cigaritis, the latter being the senior genus by 10 years. The genera Spindasis Wallengren
and *Apharitis* Riley were formally synonymised with the genus *Cigaritis* Donzel by Heath *et al.* (2002: vii, 90). Despite these formal taxonomic changes Larsen (2005: 182) prefers to maintain the genera *Cigaritis*, *Spindasis* and *Apharitis* “as a valid reflection of evolutionary history”. D’Abrera, while agreeing with Larsen’s conclusion, is scornful of his reasons, stating that he has objective reasons for maintaining the three genera. D’Abrera does not, however, state these reasons. This has resulted in the following invalid combinations in d’Abrera (op. cit.):

712 *Axiocerses crucenta* (Trimen, 1894) was synonymised with *Axiocerses punicea* (Grose-Smith, 1889) by Ackery *et al.* (op. cit.: 564) but was formally treated as a valid subspecies of *Axiocerses punicea* (Grose-Smith, 1889) by Henning & Henning (1996: 42). D’Abrera, ignoring Henning & Henning (op. cit.), avers that *Axiocerses crucenta* (Trimen, 1894) is a synonym of *punicea* but makes no formal taxonomic changes.

714 *Argyrocupha malagrida* (Wallengren, 1857) was recombined as *Trimenia malagrida* (Wallengren, 1857) by Heath (1997) but is given, invalidly, as *Argyrocupha malagrida* Wallengren, 1857 by d’Abrera, ignoring Heath (op. cit.).

714 *Argyrocupha malagrida cedrusmontana* Dickson & Stephen, 1975 was recombined as *Trimenia malagrida cedrusmontana* (Dickson & Stephen, 1975) by Heath (op. cit.) but is given, invalidly, as *Argyrocupha malagrida cedrusmontana* Dickson & Stephen, 1971 by d’Abrera, ignoring Heath (op. cit.).

714 *Argyrocupha malagrida maryae* Dickson & Henning, 1980 was recombined as *Trimenia malagrida maryae* (Dickson & Henning, 1980) by Heath (op. cit.) but is given, invalidly, as *Argyrocupha malagrida maryae* Dickson & Henning, 1980 by d’Abrera, ignoring Heath (op. cit.).

728 *Chrysoritis phosphor borealis* (Quickelberge, 1972) as a synonym of *Chrysoritis phosphor* (Trimen, 1864) but does not formally synonymise *borealis* with *phosphor*.

737 D’Abrera treats *Chrysoritis atlantica* (Dickson, 1966) was synonymised with *Chrysoritis lysander* (Pennington, 1962) by Heath (op. cit.: 89). D’Abrera treats *atlantica* [sic] as a valid species, without formally changing its status from that assigned by Heath (op. cit.: 89).

737 D’Abrera treats the subgenera of *Iolaus* as full genera because he regards sub-taxis as philosophically unacceptable. He does not, however, formalise his position. The subgenera *Etesiolaus* Stempffer & Bennett, 1959 and *Stugeta* Druce, 1891 were raised to generic level by Collins *et al.* (2003) and Larsen (op. cit.) respectively.
Iolaus silanus alticola (Stempffer, 1961) should be regarded as a synonym of Iolaus silanus Grose-Smith, 1889 and not as a subspecies of it. Stempffer (1961), when describing alticola, apparently gave the same localities as those for silanus. Kielland (op. cit.) does not, however, formally sink alticola to silanus. D’Abrera follows Kielland (op. cit.) in treating alticola as a synonym of silanus but also fails to formalise the taxonomic change.

Stugeta sudanicus (Aurivillius, 1905) but does not fails to formalise the taxonomic change.

Iolaus aphnaeoides aethes Clench, 1965 was recombined as Iolaus diametra aethes Clench, 1965 by Ackery et al. (op. cit.). Subsequently, it was raised to Iolaus aethes Clench, 1965 by Congdon & Collins (1998: 91). D’Abrera, ignoring Congdon & Collins (op. cit.), informally treats Iolaus aethes Clench, 1965 as a subspecies of Iolaus diametra (Karsch, 1895).

Iolaus aphnaeoides aethes Clench, 1965 was recombined as Iolaus diametra aethes Clench, 1965 by Ackery et al. (op. cit.). Subsequently, it was raised to Iolaus aethes Clench, 1965 by Congdon & Collins (op. cit.: 91). D’Abrera, ignoring Congdon & Collins (op. cit.), invalidly treats Iolaus mafugae Stempffer & Bennett, 1959 as a subspecies of Iolaus diametra (Karsch, 1895).

D’Abrera treats Iolaus yalaee (Riley, 1928) as a subspecies of Iolaus bansana Bethune-Baker, 1926, but does not formally change its status vis-à-vis Larsen (1991: 195), who treats it as a valid species.

Stugeta bowkeri caerulea Stempffer, 1947 was formally renamed by Koçak (1996) as Iolaus (Stugeta) bowkeri albeza Koçak, 1996. This treatment was ignored by D’Abrera who, incorrectly, lists the taxon as Stugeta bowkeri caerulea Stempffer, 1947

Stugeta bowkeri occidentalis (Stempffer & Bennett, 1958) was raised to Stugeta occidentalis (Stempffer & Bennett, 1958) by Larsen (2005). D’Abrera treats Stugeta occidentalis as a subspecies of Stugeta bowkeri (Trimen, 1864) but does not formally change its status, even though he says that he disagrees with Larsen (op. cit.).

Iolaus [sic] umbrosus var. sudanicus Aurivillius, 1905 was formally raised to Iolaus (Epamera) sudanicus Aurivillius, 1905 by Larsen (op. cit.: 561). D’Abrera, as suggested by Larsen (op. cit.), treats Iolaus (Epamera) sudanicus Aurivillius, 1905 as Stugeta sudanicus (Aurivillius, 1905) but does not formalise the new combination.

Iolaus leucoceros (Oberthür, 1916) is given as a synonym of Iolaus argentarius Butler, 1879 by Ackery et al. (op. cit.). D’Abrera, without explanation, informally treats leucoceros as a synonym of Iolaus meremos (Mabille, 1878) rather than as a synonym of Iolaus argentarius Butler, 1879.

Iolaus jamesoni entebbeae (Riley, 1928) is given as a synonym of Iolaus iulus Hewiston, 1869 by Ackery et al. (op. cit.). D’Abrera treats this taxon (as entebbeae [sic]) as a valid subspecies of jamesoni, without formally removing it from synonymy with iulus.

D’Abrera, without comment, places the genera Hemiosia Aurivillius, 1922, Hypolycaena Felder, 1862 (p.764) and Leptomyrina Butler, 1898 (p.768) in the Tribe Iolaini Riley, 1958. These genera, properly, belong in the tribe Hypolycaenini Swinhoe, 1910.

Hemiosia varnieri Stempffer & Bennett, 1958 was synonymised with Hemiosia cobaltina (Aurivillius, 1899) by Lees et al. (2003: 792). D’Abrera treats varnieri as a good species, apparently being unaware of Lees et al. (op. cit.).

D’Abrera treats Hypolycaena similis Dufrane, 1945 as a synonym of Hypolycaena antifanus (Westwood, 1851) but does not formalise the taxonomic change to its status

Hypolycaena liara f. obscura Stempffer, 1947 was treated as Hypolycaena liara obscura Stempffer, 1947 by Larsen (1991). It was renamed as Hypolycaena liara suda Lamas, 2007 by Lamas (op. cit.: 129). Larsen (2005) noted that subspecies obscura (now suda) is sympatric with the nominate subspecies in Uganda and western Kenya, and probably is a distinct species. He does not, however, formally revise its status. D’Abrera disagrees with Larsen and simply considers obscura (now suda) to be a dark form of liara. D’Abrera, however, does not formalise his taxonomic position.

D’Abrera largely rejects Libert’s (2004c) treatment of the Afrotropical members of the tribe Deudorixin Doherty, 1886. He informally (and therefore invalidly) raises the subgenus Virachola Moore, 1881 to generic level and thus treats all the species placed in Deudorix by Libert as species of Virachola, without formalising the new combinations, namely V. antalus, V. batikelides, V. batikelides, V. caliginosa, V. dariaeves, V. dinocharies, V. dinomenes, V. diocles, V. diopolis, V. ecaudata, V. edwardsi, V. galathea, V. kayonna, V. livia, V. lorisona, V. nicephora, V. odana, V. renidens, V. suk, V. ufipa, V. ungemachi, V. vansomeri, and V. vansoni.

D’Abrera avers that Deudorix nicephora Hulstaert, 1924 may be a synonym of Virachola caliginosa (Lathy, 1903) but does not make a formal taxonomic emendation.

Ackery et al. (op. cit.) treat Deudorix batikelides Holland, 1920 as a synonym of Deudorix caerulea Druce, 1890 but Larsen (1991: 207) considers it to be a synonym of Deudorix diocles Hewiston, 1869. D’Abrera, who misspells the taxon as batikeloides, also avers that it may be a synonym of diocles. Neither
Larsen, nor d’Abrera, however, formalise their taxonomic position.

774 Deudorix diomedes Jackson, 1966 was synonymised with Deudorix dinomenes Grose-Smith, 1887 by D’Abrera (1980) but treated as a subspecies of dinomenes by Libert (2004c: 163). D’Abrera avers that diomedes is a synonym of dinomenes but makes no formal taxonomic emendation.

776 Kopelates Druce, 1891 was synonymised with Pilodeudorix Druce, 1891 by Libert (op. cit.). Kopelates Druce, 1891 was informally resurrected by d’Abrera.

776 Hypokopelates Druce, 1891 was synonymised with Pilodeudorix Druce, 1891 by Libert (op. cit.). Hypokopelates Druce, 1891 was informally resurrected by d’Abrera.

779 Hypokopelates obscura Bethune-Baker, 1914 was treated as a synonym of Paradeudorix eleala (Hewitson, 1865) by Larsen (2005: 226), but as a synonym of Paradeudorix moyambina (Bethune-Baker, 1904) by d’Abrera. Neither of these authors, however, formalises their taxonomic position.

780 D’Abrera treats Pilodeudorix aruma nigeriana Libert, 2004 as a synonym of Pilodeudorix aruma (Hewitson, 1873) but does not formally emend its status.

781 D’Abrera treats Pilodeudorix congona orientalis Stempffer, 1957 as a synonym of Pilodeudorix congona (Aurivillius, 1923) but does not formally emend its status.

782 Diopetes Karsch, 1895 was synonymised with Pilodeudorix Druce, 1891 by Libert (op. cit.). Diopetes Karsch, 1895 was informally resurrected by d’Abrera.

784 Capys catharus rileyi Stoneham, 1938 was raised to Capys rileyi Stoneham, 1938 by Larsen (1991: 212). Larsen (op. cit.) treats rileyi as a full species because males of rileyi have no androconial patch, whereas nominate catharus males (ex Zambia) do. D’Abrera informally lists the taxon as Capys catharus rileyi Stoneham, 1938, ignoring Larsen (op. cit.).

784 Capys disjunctus bamendanus Schultzze, 1909 was treated as a valid species (Capys bamendanus Schultzze, 1909) by Larsen (2005: 231) but he did not formally raise it to a full species. D’Abrera ignores Larsen (op. cit.), treating the taxon in its original combination as Capys disjunctus bamendanus Schultzze, 1909. Larsen’s view is accepted and it is raised to full species status:

Capys bamendanus (Schultzze, 1909) stat. rev.

804 Lycaena scintilla Malbille, 1877 is listed as Rysops scintilla (Malbille, 1877) by Ackery et al. (op. cit.). It was formally recombined as Catochrysops (Rysops) scintilla (Malbille, 1877) by Lees et al. (2003). D’Abrera, ignoring, or being unaware of Lees et al. (op. cit.), erroneously lists it as Rysops scintilla Malbille, 1877.

805 D’Abrera avers that Uranothauma confusa Kiellland, 1989 is a synonym of Uranothauma crawshayi Butler, 1895 but makes no formal taxonomic changes.

808 Cacyreus paulemon (Stoll, 1782) was given the replacement name Cacyreus tespis (Herbst, 1804) by Koçak (1996). However, G. Lamas (pers. comm., 2007) noted that tespis is a misidentification (and misspelling) of Papilio thespis Linnaeus, 1764 and is thus an invalid replacement name. He suggested that the name fracta Grünberg, 1911 is the next available one. D’Abrera, mistakenly, follows Koçak (op cit.) in listing the species as Cacyreus tespis Herbst, 1804. For the same reasons, the subspecies Cacyreus tespis ghimirra Talbot, 1935 should be Cacyreus fracta ghimirra Talbot, 1935.

808 Larsen (2005) is not convinced that Uranothauma frederikkae manengoubensis Libert, 1993 is a valid subspecies. D’Abrera concurs and treats manengoubensis as a synonym of Uranothauma frederikkae Libert, 1993, but makes no formal taxonomic changes.

812 D’Abrera avers that Leptotes cassioides (Capronnier, 1889) is a synonym of Leptotes rabefaner (Malbille, 1877) but makes no formal taxonomic changes.

812 Leptotes pirithous insulana (Aurivillius, 1909) was formally synonymised with Leptotes pirithous (Linnaeus, 1767) by Lees et al. (op. cit.). D’Abrera erroneously lists insulana (as insulansus) as a valid subspecies of Leptotes pirithous, apparently not being aware of Lees et al. (op. cit.).

814 Castalus melaea interruptus Gabriel, 1954 was placed in a new genus and raised to Tuxentius interruptus (Gabriel, 1954) by Larsen (1982). It was then given the replacement name of Tuxentius Gabriel Kemal, 1999 by Kemal (1999). A second replacement name, Tuxentius gabrieli Bálint, 1999 followed in the same year by Bálint (1999). D’Abrera ignores Larsen (op. cit.), Kemal (op. cit.) and Bálint (op. cit.), erroneously listing the taxon as Tuxentius melaea interruptus Gabriel, 1954.

816 Zizina antanossa (Mabille, 1877) was formally downgraded to Zizina otis antanossa (Mabille, 1877) by Yago et al. (2008). D’Abrera erroneously lists it as Zizina antanossa Mabille, 1877, apparently being unaware of the publication by Yago et al. (op. cit.).

816 D’Abrera erroneously treats Azanus soalalicus (Karsch, 1900) as a subspecies of Azanus jesus (Guérin-Ménéville, 1849), apparently being unaware of the publication by Lees et al. (op. cit.), who treated it as a valid species.

818 Eicochrysops pusillus (Ungemach, 1932) was given as a good species by Ackery et al. (op. cit.), but was formally synonymised with Eicochrysops distractus (Joannis & Verity, 1913) by Kühne (2000). Treated, erroneously, as a valid species by d’Abrera,
without reference to the treatment accorded *pusillus* by Kühne (op. cit.).

824 *Lepidochrysops celerae var. abyssinensis* (Strand, 1911) is given as a synonym of *Lepidochrysops parsimon* (Fabricius, 1775) by Ackery *et al.* (1995). Larsen (2000: 212) resurrected and recombined *abysinensis* (Strand, 1911) as *Lepidochrysops loveni abyssinensis* (Strand, 1911). G. Lamas (pers. comm. to MCW, 2007) pointed out that the correct name for the taxon is *Lepidochrysops abyssinensis* (Strand, 1911), since *abysinensis* (Strand, 1911) predates *loveni* (Aurivillius, 1921). D’Abrera erroneously follows Larsen (op. cit.), erroneously listing the taxon as *Lepidochrysops parsimon abyssinensis* Strand, 1911.

824 *Lepidochrysops loveni* (Aurivillius, 1921) is given as a synonym of *Lepidochrysops parsimon* (Fabricius, 1775) by Ackery *et al.* (op. cit.). Larsen (op. cit.) resurrected the taxon as *Lepidochrysops loveni* (Aurivillius, 2021). G. Lamas (pers. comm. to MCW, 2007) pointed out that the correct name for the taxon is *Lepidochrysops abyssinensis loveni* (Aurivillius, 1921). D’Abrera erroneously follows Larsen (op. cit.), listing the taxon as *Lepidochrysops parsimon loveni* Aurivillius, 1922 [date of authorship erroneous; should be 1921].

824 *Lepidochrysops celerae kivuensis* (Joicy & Talbot, 1921) is given as a synonym of *Lepidochrysops parsimon* (Fabricius, 1775) by Ackery *et al.* (op. cit.). Larsen (op. cit.) resurrected and recombined *kivuensis* (Joicy & Talbot, 1921) as *Lepidochrysops loveni kivuensis* (Joicy & Talbot, 1921). G. Lamas (pers. comm. to MCW, 2007) pointed out that the correct name for the taxon is *Lepidochrysops abyssinensis kivuensis* (Joicy & Talbot, 1921). D’Abrera erroneously follows Larsen (op. cit.), listing the taxon as *Lepidochrysops loveni kivuensis* Joicy & Talbot, 1921.

824 *Lepidochrysops parsimon oculus* (Ungemach, 1932) is given as a synonym of *Lepidochrysops parsimon* (Fabricius, 1775) by Ackery *et al.* (op. cit.). Larsen (op. cit.) resurrected and recombined *oculus* (Ungemach, 1932) as *Lepidochrysops loveni oculus* (Ungemach, 1932). G. Lamas (pers. comm. to MCW, 2007) pointed out that the correct name for the taxon is *Lepidochrysops abyssinensis oculus* (Ungemach, 1932). D’Abrera avers that *oculus* may be a synonym of *parsimon abyssinensis* [sic] but makes no formal taxonomic changes.

824 *Lepidochrysops cinerea kitale* (Stempflier, 1936) was raised to *Lepidochrysops kitale* (Stempflier, 1936) by Larsen (1991: 247). D’Abrera ignores Larsen (op. cit.), and invalidly listing the taxon as *Lepidochrysops cinerea kitale* Stempflier, 1936.

824 D’Abrera also lists *Lepidochrysops cinerea lunulifer* Ungemach, 1932. *L. kitale* is a Kenyan endemic, whereas *L. cinerea* is found in south-east DRC, Zambia and Tanzania. *L. lunulifer* on the other hand, is an Ethiopian endemic. This means that *lunulifer* cannot, on biogeographical grounds, be considered to be a subspecies of *cinerea*, with *L. kitale* intervening between them. The taxon *lunulifer* should therefore be raised to species level:

Lepidochrysops lunulifer Ungemach, 1932 – **stat. rev.**

826 D’Abrera avers that *Lepidochrysops negus wau* (Wichgraf, 1921) is a synonym of *Lepidochrysops negus* (Felder & Felder, 1865), but makes no formal taxonomic changes.

826 *Catrichrysops naidina* Butler, 1886 was listed as *Lepidochrysops naidina* (Butler, 1886) by Ackery *et al.* (op. cit.). It was formally recombined as *Chilades naidina* (Butler, 1886) by Bálint (op. cit.: 46). D’Abrera erroneously lists it as *Lepidochrysops naidina* Butler, 1886, ignoring, or being unaware of the publication by Bálint (op. cit.).

830 Carcasson (1981) and Larsen (1991) doubted that *Lepidochrysops koaena* (Strand, 1911) is a valid species but made no formal taxonomic changes. D’Abrera avers that *koaena* may be a synonym of *Lepidochrysops Kilimanjarensis* (Strand, 1909) but also makes no formal taxonomic changes.

838 *Orachrysops major* (Bethune-Baker, 1923) was regarded to be a valid species by Vári & Kroon (1986: 52, 132, 175), and also given as such in Ackery *et al.* (1995: 667). It was formally synonymised with *Orachrysops lacrimosa* (Bethune-Baker, 1923) by Henning & Henning (1994: 264). D’Abrera treats *major* as a valid species, apparently unaware that its status had been formally emended by Henning & Henning (op. cit.).

842 D’Abrera avers that *Chilades serrula* (Mabille, 1890) is a junior synonym of *Chilades eleusis* (Demaison, 1888), but makes no formal taxonomic changes.

844 *Chilades kedonga* (Grose-Smith, 1898) was listed as a good species by Ackery *et al.* (1995) but was formally synonymised with *Chilades naidina* by Bálint (op. cit.: 46). D’Abrera treats *kedonga* as a valid species, ignoring, or being unaware of the publication by Bálint (op. cit.).

848 *Saribia perroti fiana* Riley, 1932 was synonymised with *Saribia perroti* Riley, 1932 by Lees *et al.* (op. cit.) but was apparently unaware of the publication by Lees *et al.* (op. cit.), treated *fiana* erroneously as a valid subspecies.
In this section we list the taxonomic changes suggested by d’Abrera (op. cit.) but not implemented. These changes should also be ignored when establishing the correct names for the taxa concerned. The changes are listed in the order in which they appear in d’Abrera and for ease of reference, each entry is preceded by the page number(s) on which it appears.

688 D’Abrera avers that Lachnocnema laches (Fabricius, 1793) may be a synonym of Lachnocnema bibulus (Fabricius, 1793) but makes no formal taxonomic changes and includes it in his book as a valid taxon.

690 D’Abrera avers that Lachnocnema intermedia Libert, 1996 may be a synonym of Lachnocnema tanzaniensis Libert, 1996 but makes no formal taxonomic changes and includes it in his book as a valid taxon.

701 D’Abrera avers that Aphnaeus affinis Riley, 1921 may be a junior synonym of Aphnaeus marshalli Neave, 1910, but makes no formal taxonomic changes in this regard and includes it in his book.

702 D’Abrera (op. cit.: 702) avers that Spindasis montana Joicey & Talbot, 1924 may be a synonym of Spindasis natalensis (Westwood, 1851) but makes no formal taxonomic changes in this regard.

712 D’Abrera avers that Axioceres collinsi Henning & Henning, 1996 may be a synonym of Axioceres karinae Henning & Henning, 1996 but does not make any formal taxonomic changes and includes it in his book.

ACKNOWLEDGEMENTS

The authors are grateful to Michel Libert, whose major revisions of important groups of Lycaenidae were invaluable for assessing the taxonomic issues. They also wish to thank the Editor and the reviewers for their constructive and helpful comments and suggestions, which have greatly improved the original text.

LITERATURE CITED

SEVEN, S. 1997. [Check-list of the Lycaenidae of Ethiopia and adjacent countries, with some taxonomical notes (Lepidoptera).] Centre for Entomological Studies Miscellaneous Papers 43: 3–8.

APPENDIX

Summary of taxonomic changes made in this article

<table>
<thead>
<tr>
<th>Taxonomic change</th>
<th>Type of change</th>
<th>Page no.</th>
<th>d’Abrera (2009) page(s)</th>
<th>Justification of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxyliodes feminina stemfferi</td>
<td>stat. rev.</td>
<td>109</td>
<td>697</td>
<td>Libert (2004a)</td>
</tr>
<tr>
<td>Cigaritis acamas gilletti</td>
<td>comb. nov.</td>
<td>110</td>
<td>702</td>
<td>Larsen (2005)</td>
</tr>
<tr>
<td>Iolaus djaloni</td>
<td>stat. rev.</td>
<td>110</td>
<td>746</td>
<td>Larsen (2005: pl. 29)</td>
</tr>
<tr>
<td>Iolaphilus to Philiolas (30 species)</td>
<td>comb. nov.</td>
<td>110/1</td>
<td>754</td>
<td>Larsen (2005)</td>
</tr>
<tr>
<td>Iolaus christofferi</td>
<td>stat. rev.</td>
<td>111</td>
<td>758</td>
<td>Collins et al. (2003)</td>
</tr>
<tr>
<td>Iolaus newporti</td>
<td>stat. rev.</td>
<td>111</td>
<td>758</td>
<td>Larsen (1994)</td>
</tr>
<tr>
<td>Iolaus mane</td>
<td>stat. rev.</td>
<td>111</td>
<td>759</td>
<td>Collins et al. (2003)</td>
</tr>
<tr>
<td>Hypholycaena anara</td>
<td>stat. rev.</td>
<td>111</td>
<td>764</td>
<td>Larsen & Mey (1998)</td>
</tr>
<tr>
<td>Pilodeudorix (Kopelates)</td>
<td>stat. rev.</td>
<td>112</td>
<td>776</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Kopelates) mimeta</td>
<td>comb. nov.</td>
<td>112</td>
<td>776</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Kopelates) m. oreas</td>
<td>comb. nov.</td>
<td>112</td>
<td>776</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Kopelates) m. angusta</td>
<td>comb. nov.</td>
<td>112</td>
<td>776</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Kopelates) baginei</td>
<td>comb. nov.</td>
<td>112</td>
<td>776</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Kopelates) ula</td>
<td>comb. nov.</td>
<td>113</td>
<td>776</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Kopelates) virgata</td>
<td>comb. nov.</td>
<td>113</td>
<td>776</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Unikopelates)</td>
<td>stat. rev.</td>
<td>113</td>
<td>777</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Unikopelates) angelita</td>
<td>comb. nov.</td>
<td>113</td>
<td>777</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Unikopelates) a. schulzei</td>
<td>comb. nov.</td>
<td>113</td>
<td>777</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Strongylates)</td>
<td>stat. rev.</td>
<td>113</td>
<td>777</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Strongylates) o. genuba</td>
<td>comb. nov.</td>
<td>113</td>
<td>777</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Strongylates) dimiris</td>
<td>comb. nov.</td>
<td>113</td>
<td>777</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Strongylates) dimiris indenta</td>
<td>comb. nov.</td>
<td>113</td>
<td>778</td>
<td>This paper</td>
</tr>
<tr>
<td>Rubropetales = Pilodeudorix</td>
<td>syn. nov.</td>
<td>113</td>
<td>780</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix aruma</td>
<td>comb. nov.</td>
<td>113</td>
<td>780</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes)</td>
<td>stat. rev.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) deritas</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) aucta</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) corrucans</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) violettta</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) latclavia</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) hugoi</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) bwamba</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) catalla</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) ducarmei</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) pseudoderitas</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) aurivilliusi</td>
<td>comb. nov.</td>
<td>113</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) nyanzae</td>
<td>comb. nov.</td>
<td>114</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) badhami</td>
<td>comb. nov.</td>
<td>114</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) fumata</td>
<td>comb. nov.</td>
<td>114</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Pilodeudorix (Dioptes) kiellandi</td>
<td>comb. nov.</td>
<td>114</td>
<td>782</td>
<td>This paper</td>
</tr>
<tr>
<td>Lepidochrysops permagnus</td>
<td>nomen nudum</td>
<td>114</td>
<td>834</td>
<td>Seven (1997)</td>
</tr>
<tr>
<td>Thermoniphas colorata</td>
<td>stat. rev.</td>
<td>114</td>
<td>841</td>
<td>Larsen (2005)</td>
</tr>
<tr>
<td>Capys bamendamus</td>
<td>stat. rev.</td>
<td>117</td>
<td>784</td>
<td>Larsen (2005)</td>
</tr>
<tr>
<td>Lepidochrysops lunulifer</td>
<td>stat. rev.</td>
<td>118</td>
<td>824</td>
<td>Williams (2013)</td>
</tr>
</tbody>
</table>