The aims of the Lepidopterists' Society of Africa are to promote the scientific study and the conservation of Lepidoptera in Africa, and to provide a communication forum for all people who are interested in African Lepidoptera. Please visit www.lepsoc.org.za for more information.

Metamorphosis, which is the official journal of the Society, publishes original scientific papers as well as articles of a less technical nature. Fees indicated below refer to surface postage, but if airmail is required, notify the Treasurer and add R32.00 for Africa or US$6.00 if overseas per issue.

Membership of the Society is open to all persons who are interested in the study of Lepidoptera. There is no geographical limit to membership. There are four categories of membership:

<table>
<thead>
<tr>
<th>Category of Membership</th>
<th>South Africa</th>
<th>Rest of Africa</th>
<th>Overseas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor Member</td>
<td>R600.00 pa</td>
<td>R600.00 pa</td>
<td>US$ 200.00 pa</td>
</tr>
<tr>
<td>Full Member</td>
<td>R225.00 pa</td>
<td>R275.00 pa</td>
<td>US$ 60.00 pa</td>
</tr>
<tr>
<td>Juniors & pensioners</td>
<td>R100.00 pa</td>
<td>R150.00 pa</td>
<td>US$ 50.00 pa</td>
</tr>
<tr>
<td>Affiliate members (Societies, Museums, Schools etc.)</td>
<td>R225.00 pa</td>
<td>R275.00 pa</td>
<td>US$ 60.00 pa</td>
</tr>
</tbody>
</table>

Back issues of Metamorphosis are still available @ R30.00 per copy or US$15.00 for outside South Africa. Fees for outside South Africa are higher due to increased postage. Membership is annual per calendar year and fees are due on the 1st January of each year.

CORRESPONDENCE

General: The Public Relations Officer, Dave McDermott, 39 Norman Drive, Northcliff Ext.9, 2195, South Africa. E-Mail: dave@copywise.co.za

Metamorphosis: Martin Krüger, The Editor, P. O. Box 413, Pretoria 0001, South Africa. E-Mail: kruger@nfi.museum
Adult behaviour of *Orachrysops niobe* (Lepidoptera: Lycaenidae)
By D.A. Edge .. 116

Field notes including a summary of trophic and ant-associations for the butterfly genera *Chrysoritis* Butler, *Aloeides* Hübner and *Thestor* Hübner (Lepidoptera: Lycaenidae) from South Africa
By A. Heath, L. McLeod, Z.A. Kaliszewska, C.W.S. Fisher & M. Cornwall
.. 127

An alternative hypothesis of mate attraction systems for nocturnal Lepidoptera. Moths 'n things # 3
By H.S. Staude ... 149

“I thought I'd died and gone to heaven”
By L. Durham & P. Ward ... 154
Adult behaviour of *Orachrysops niobe* (Trimen) (Lepidoptera: Lycaenidae)

David A. Edge
P O Box 2586, Knysna, 6570, South Africa
Email: daveedge@xnets.co.za

Abstract

Observations have been conducted over several years at the Brenton Blue butterfly reserve (BBBR) on the adult behaviour of *O. niobe*, as part of a larger study of the ecology of the species. The nectar sources of both sexes are recorded, and assessed not to be a limiting factor for population size. The patrolling behaviour of males and the courtship and mating behaviour of both sexes are described. Observations of female oviposition behaviour and preferences are combined with data on egg densities to conclude that neither ants nor previous oviposition history influence female choice of host plants, which appear to be detected by visual rather than olfactory cues. The incidence of adult dwarfism is recorded and the low natural occurrence compared with results of captive breeding. The annual phenology of the development stages of *O. niobe* is recorded and unusual features such as an occasional third brood discussed.

Key words

Orachrysops niobe; nectar sources; oviposition; dwarfism; phenology

Introduction

The type species of the genus *Orachrysops* Vári, 1986 is *Lycaena niobe* Trimen, 1862, described from three male specimens collected at Knysna in 1858 by Roland Trimen, curator of the South African Museum in Cape Town (Trimen, 1862). *Orachrysops niobe* is red listed as “Critically Endangered” (Henning et al., in prep.), and now only known from Brenton-on-Sea near Knysna. It previously occurred in Nature's Valley 50 km to the east but presumably became extinct there as a result of anthropogenic influences (property development, habitat fragmentation and loss of megaherbivore populations). The Brenton-on-Sea population has been subjected to similar pressures but has so far avoided a similar fate following an energetic campaign to save the species (Steenkamp & Stein, 1999), during which it became known as the Brenton Blue. This resulted in the procurement of the land on which the population occurs by central government and its proclamation in July 2005 as a special nature reserve (Brenton Blue butterfly reserve = BBBR).

An intensive research programme was initiated at the BBBR in 2000 with the broad
objective of defining the ecological factors influencing the survival of *O. niobe*. All aspects of the habitat, vegetation communities, ant assemblages, life history and population dynamics of *O. niobe* and its larval host plant *Indigofera erecta* Thunb. (Fabaceae) were studied (Edge, 2005), and this paper reports on the behaviour of *O. niobe* adults.

Materials & methods

Study site
The study site was the Brenton Blue Butterfly Reserve (BBBR) at Brenton-on-Sea near Knysna in the Western Cape Province of South Africa. It has a total area of 14,670 m², is situated at co-ordinates 34°04'20"S 23°02'00"E, and lies at 90-115 metres above mean sea level (a.m.s.l.) on a well-drained south-facing slope with an average inclination of 1 in 3 (18°), varying between 10° and 26°. Figure 1 shows the BBBR, with the layout of its paths, the area in which a controlled burn was carried out in September 2000, and the breeding areas for the butterfly. The climatic, topographical and geological features of the site and its vegetation communities are described fully by Edge (2005) and Edge *et al.*, in press.

Figure 1: Brenton Blue Butterfly Reserve – boundaries, layout of paths, breeding areas and burnt area

Behavioural observations
The behaviour of adult *O. niobe* was observed both during all adult population counts from October 1991 to April 2005, and during other visits to the BBBR (e.g. for conducting host plant surveys), and recorded on data sheets (Figure 2, page 118). Behaviours such as male patrolling, basking, courtship and mating behaviour, and
female search for the host plant *Indigofera erecta* Thunb. (Lubke et al., 2003) and oviposition, were all recorded. Whenever an adult *O. niobe* visited a flower and took nectar (extended its proboscis) the time, butterfly gender, place and plant species were recorded. If the plant identity was uncertain a voucher specimen was taken for later determination, and photographs were taken.

Figure 2: Data sheet for observations of adult behaviour of *O. Niobe*

<table>
<thead>
<tr>
<th>OBSERVATIONS – Orachrysops niobe (Trimen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
</tr>
<tr>
<td>WEATHER</td>
</tr>
<tr>
<td>MAX/MIN °C</td>
</tr>
<tr>
<td>TIME</td>
</tr>
<tr>
<td>OTHER OBSERVATIONS</td>
</tr>
<tr>
<td>TIME</td>
</tr>
</tbody>
</table>

Table 1: Nectar plant visitations by adults of *O. niobe*, in descending order of frequency

<table>
<thead>
<tr>
<th>Nectar source</th>
<th>Family</th>
<th>No. of visitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selago glomerata Thunb.</td>
<td>Scrophulariaceae</td>
<td>10</td>
</tr>
<tr>
<td>Rhynchosia chrysoscias Benth. ex Harv.</td>
<td>Fabaceae</td>
<td>10</td>
</tr>
<tr>
<td>Indigofera erecta Thunb.</td>
<td>Fabaceae</td>
<td>6</td>
</tr>
<tr>
<td>Indigofera verrucosa Eckl. & Zeyh.</td>
<td>Fabaceae</td>
<td>2</td>
</tr>
<tr>
<td>Geranium incanum Burm f.</td>
<td>Geraniaceae</td>
<td>10</td>
</tr>
<tr>
<td>Lobelia neglecta Roem. & Schult.</td>
<td>Campanulaceae</td>
<td>1</td>
</tr>
<tr>
<td>Helichrysum cymosum (L.) D. Don</td>
<td>Asteraceae</td>
<td>2</td>
</tr>
<tr>
<td>Felicia echinata (Thunb.) Nees</td>
<td>Asteraceae</td>
<td>1</td>
</tr>
<tr>
<td>Erica speciosa Andrews</td>
<td>Ericaceae</td>
<td>0</td>
</tr>
<tr>
<td>Hypericum aethiopicum Thunb.</td>
<td>Hypericaceae</td>
<td>2</td>
</tr>
<tr>
<td>Crassula tetragona L.</td>
<td>Crassulaceae</td>
<td>1</td>
</tr>
<tr>
<td>Chironia melampyrifolia Lam.</td>
<td>Gentianaceae</td>
<td>1</td>
</tr>
<tr>
<td>Commelina africana L.</td>
<td>Commelinaceae</td>
<td>0</td>
</tr>
<tr>
<td>Hypoxis villosa L. f.</td>
<td>Hypoxidaceae</td>
<td>0</td>
</tr>
<tr>
<td>Oxalis caprina L.</td>
<td>Oxalidaceae</td>
<td>0</td>
</tr>
<tr>
<td>Polygala fruticosa P.J. Bergius</td>
<td>Polygalaceae</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>
Results

Nectar plant visitations
A summary of observed nectar plant visitations by male and female adults of *O. niobe* appears in Table 1 on page 118, including the observations reported by Edge (2002). There was a definite preference for certain species of plant. Seventy-nine percent of the total visits observed were made to five plant species, three of which are in the family Fabaceae (=Leguminosae). *Orachrysops niobe* is not a pollinator of *I. erecta*, since it does not cause the flowers to open and disperse pollen – this can only be accomplished by a strong insect such as a bee. All of the nectar plants recorded are fairly common at the BBBR, with the exception of *Commelina africana* Linnaeus.

Mating
Male *O. niobe* adults exhibited patrolling behaviour along a flight path that included A1 to A2 to A3 and A2 to B2 (Figure 1, page 117). The purpose of this behaviour seems to be the location of females, as well as nectar sources. Females, which were often freshly hatched, came down to the flight path and settled on the ground or low vegetation. When a male passed, the female would flutter up to attract his attention. A mating dance would then ensue, during which the butterflies whirled about one another until the female settled on a low shrub. The male would then settle nearby and walk to a position alongside the female. He would then curve his abdomen round and clasp the tip of the female's abdomen at which point copulation would commence (Figure 3). Copulation was observed on five occasions, between 11h30 and 13h30, lasting for 5 to 80 minutes, with a mean of 35 minutes.

Oviposition behaviour
The data obtained during egg counts, plus the observations of females (Edge, 2005) enable some statements to be made about oviposition behaviour:
1) *Indigofera erecta* is the only host plant. Searches on other *Indigofera* species growing at the site (*I. verrucosa* Ecklon & Zeyher and *I. glaucescens* Eckl. & Zeyh.) have not revealed any eggs. However, on two occasions female *O. niobe* were observed to lay several eggs on *Phyllanthus incurvus* Thunberg (Euphorbiaceae), a prostrate herb with leaves of a similar size and shape to *I. erecta* (Figure 4). Cuttings with eggs on were taken from these plants and placed in airtight plastic containers. Upon emergence, the larvae refused to eat the leaves of the plant, but left the plant and crawled around the box until they died. The larvae retained a pale grey colour (their only meal having been eating their way out of their egg shells) until their death, whereas normally, after commencing phytophagy, the 1st instar larvae become pale green. Other hatched larvae from eggs laid on *P. incurvus* were offered leaves of *I. erecta*, on which they commenced feeding, and these larvae developed normally through to the 4th instar. These observations provide convincing evidence that *P. incurvus* is not an alternative host plant for *O. niobe*, but must have been selected in error by the females.

2) The *I. erecta* plants chosen by females for oviposition were mostly healthy and vigorous (80% of the eggs laid were on plants with more than 6 runners), and were in semi-shade with bare ground usually in the vicinity of the plant.

3) Eggs were usually laid on the underside of leaflets on a horizontal (as opposed to a vertical) runner close to the ground (Figure 5). The eggs were therefore well concealed and in a cool, damp microclimate. Occasionally (1.8% of observations) eggs were laid on the upperside of leaflets, on a stem (as opposed to a leaf) or on a vertical runner (as opposed to horizontal runners).
4) There was a definite preference for oviposition on host plants growing along the paths rather than on plants growing in the burnt area (Edge, 2002; 2005).
5) No interactions between O. niobe females and ants were observed, and all observations were consistent with the hypothesis that oviposition sites are chosen on the characteristics of the plant rather than any cue from the presence of an ant.
6) The number of eggs laid per plant varied between 0 (56% of plants surveyed) to 1 (13% of plants) to between 26 and 31 (0.4% of plants).

Dwarfism

A dwarf adult male was captured on 8 November 2002 and a female on 25 January 2003. The natural occurrence of dwarfs is very low (0.2% of total observations), although more could have been overlooked since they are the same size and colour as Cacyreus tespis tespis (Herbst), which is fairly common at the BBBR. The dwarf adults had forewing lengths (from base to apex) from 10-13 mm, as opposed to 16-18 mm in full-sized adults (Figure 6).

![Figure 6: Full size (above) and dwarf (below) adults of O. niobe: D.A. Edge](image)

Phenology

From the captive breeding experiments and field observations, an accurate phenology of O. niobe at the BBBR site has been produced (Figure 7, page 122). The first brood adults start emerging towards the end of October, and the brood continues until the end of November. The ova laid by the first brood adult females hatch, and the larvae develop rapidly to produce a second brood of adults that flies from the last week of January until early March. Some of the ova from the second brood also
develop rapidly and produce a third, fairly small brood of April adults that was
detected during 2003 and 2005. The rest of the ova laid by the second brood adult
females develop slowly, overwinter as larvae and emerge as the next season's first
brood adults. The April brood is erratic in its appearance and may be dependent on
adequate rainfall, a warm spell of weather, or some other unknown factor.

Discussion

Adult nectar sources

Lu & Samways (2001) concluded that nectar plant availability was likely to be a
limiting factor for *Orachrysops ariadne* (Butler) populations. They found only eight
species of nectar source plants for *O. ariadne*, compared to the 16 recorded for *O.
iobe* in this study (most of which are fairly common). However, many of the nectar
plants of *O. niobe* require disturbed habitats (after fire or clearing of vegetation), and
may reduce in abundance if there is no disturbance. Under current management
practices, nectar source availability is not believed to be a limiting factor for the
O. niobe population at Brenton-on-Sea.

Oviposition behaviour

Thomas & Elmes (2001) demonstrated that lycaenid butterflies of the genus
Maculinea van Eecke select host plants in accordance with their environmental
niche rather than the presence of the attendant *Myrmica* ants, refuting claims made to
the contrary by Van Dyck *et al.* (2000). Another polyommatine, *Glaucopsyche lygdamus* (Doubleday) also does not use ants as an oviposition cue (Pierce &
Easteal, 1986).

By contrast, in the case of *Jalmenus evagoras* Donovan (Theclinae), the presence of
ants is a powerful cue for oviposition (Pierce & Elgar, 1985), as has been observed

The findings of this study are consistent with published studies of other
polyommatine species. *Orachrysops niobe* appears to select host plants based on
their characteristics and environmental niche (prostrate growth form in a partly shady microclimate), and is not influenced by the presence or absence of attendant Camponotus baynei Arnold ants, which do not forage on the aerial parts of the I. erecta plants and are generally nocturnal (Edge et al., in press b). Amongst the suitable host plants the eggs appear to be laid at random, and sometimes as many as six eggs are laid on the leaflets of one runner. The females seem unable to detect eggs previously laid by themselves or other females. More than half of the host plants were not utilised at all, whereas others were over-utilised, to the detriment of larval survival.

The non-host plant (Phyllanthus incurvus) on which O. niobe females were observed ovipositing belongs to the Euphorbiaceae, a plant family completely unrelated to Indigofera (Fabaceae). Phyllanthus incurvus has a similar growth form to I. erecta (a prostate herb), and the leaves are the same shape and size as in I. erecta. It is unlikely to have a similar odour or taste, which are generally considered to be the primary stimuli by which phytophagous insects recognise their host plants (Bernays & Chapman, 1994). Rausher (1978) demonstrated that females of Battus philenor (Linnaeus) use leaf shape to detect oviposition sites, and Prokopy & Owens (1983) argued that visual detection of host plants plays an important role. The current observations provide evidence that the females of O. niobe primarily search for the host plant by visual methods, and having alighted on a visually similar plant are not able to detect that it is a non-host plant by touch or odour. Observations that females rarely select host plants obscured by other plants for oviposition would also be explained if visual detection was primarily used.

Dwarfism

Dwarfism was recorded in Orachrysops species by earlier observers (Swanepoel, 1953; Ball, personal communication). This study has produced the first quantitative data on the natural rate of incidence of dwarf adults, and it is fairly low. Dwarfs have also been found in both broods and in both sexes, so it appears to be an erratic phenomenon, not related to season, and is probably a result of malnutrition. Larvae reared in captivity on the leaves of I. erecta only (Edge & Pringle, 1996) had a high mortality rate and produced only dwarf adults. It has now been established that the later instar larvae feed on the rootstock of the host plant I. erecta (Edge, 2005), and this additional nutrition seems to be essential for full-sized adults to be produced.

Phenology of O. niobe

Henning (1984a) proposed that the duration of larval stages is extended in myrmecophilous species. The two main broods of O. niobe display a rapid development cycle in the November to April (summer/autumn) phase, and a slower development cycle in the May to October (winter) phase. Lower temperatures, the commensurate metabolic slowdown, and the reduced activities of the attendant ants may all contribute to this phenomenon (Edge, 2005; Edge et al., in press b).
Most *Orachrysops* species appear to be univoltine, with adults emerging between October and January depending on elevation and climate (Pringle *et al*., 1994; Heath, 1997a). The known exceptions are *O. mijburghi* (G.A. & S.F. Henning) and *O. niobe*, which are bi- or trivoltine and can be found from October to April. *Orachrysops ariadne*, which only has one emergence in April, is unique in the genus and the reason for this is not known (Lu & Samways, 2002). A possible explanation for the bi- or trivoltine emergence of *O. niobe* are the benign climatic conditions in the southern Cape, with low seasonality indices of rainfall and temperature (Schulze, 1997). The April brood was not detected by earlier workers, and this raises the question as to whether this is a recently developed adaptation. Steadily increasing temperatures over the last century (IPCC, 2007) may be inducing this change. This could eventually lead to the elimination of the summer (November and February) broods and for all adult activity to become confined to the cooler month of April, as is the case with *O. ariadne* (which inhabits a much warmer region at moderate altitudes).

References

Field notes including a summary of trophic and ant-associations for the butterfly genera *Chrysoritis* Butler, *Aloeides* Hübner and *Thestor* Hübner (Lepidoptera: Lycaenidae) from South Africa

A. Heath¹, L. McLeod², Z.A. Kaliszewska³, C.W.S. Fisher⁴ & M. Cornwall⁵

¹alan.heath3@virgin.net ²lochbaylen@aol.com ³zakalisz@fas.harvard.edu
⁴fisher@epitola.fsnet.co.uk ⁵mcornwal@fas.harvard.edu

Key words

Myrmecophily, food-plants, larvae, speciation, evolution, life history, detritus.

Abstract

Eighteen life history observations on lycaenid taxa are reported, and discussed for the first time, and updated tables of all known ant symbionts and food-plants for *Chrysoritis* and *Aloeides* are presented. Interactions between first instar larvae of *Thestor rileyi* Pennington and their host ants are described. The occurrence of larvae of *Aloeides bamptoni* Tite & Dickson and *A. nolothi* Tite & Dickson with their ant-associates and food-plants are reported, and the oviposition behaviour of *A. barklyi* (Trimen) and the ecology of *A. pringlei* Tite & Dickson is described. An ant-associate and a new food-plant are recorded for *C. braueri* (Pennington), and ant associates are inferred for *Chrysoritis aridus* (Pennington) and for *C. natalensis* (van Son) using new evidence. Further evidence for the ant-associate and food-plant of *C. chrysantas* (Trimen) is presented. Food-plants and ant-associates are determined for *C. trimeni* (Riley) and *C. pan lysander* (Pennington), and for the first time they are recorded occurring in the same locality. A new locality for *C. zonarius coetzeri* Dickson & Wykeham is recorded. Each observation is reported and discussed in context, and in relation to previously published work.

Introduction

Of the 668 species of butterflies in South Africa, almost half (318) are in the family Lycaenidae (see Woodhall, 2005). Just over half (55%) of these lycaenids are obligately associated with ants during their juvenile stages (Heath & Claassens, 2003); hence they would not survive in the wild without their ant associates (Pierce et al., 2002). Therefore, knowledge of the ant associates, in addition to the host plants, is crucial for the conservation of these South African lycaenids. Williams (1996) calculated that no more than 25% of lycaenid life-histories were fully known.
in this region, and of the myrmecophilous Miletinæ and Aphnaeini, which are the subject of this paper, less than 19% were known. A major impediment to studying the life-histories of myrmecophilous lycaenids is that many live in subterranean ant nests for at least part of their juvenile period. This makes them difficult to locate and almost impossible to observe in the wild. In some habitats, ant nests can be found under rocks. But even where suitable rocks exist, they are often disturbed or overturned by baboons searching for insects and scorpions (Heath & Claassens, 2003). Studying the behaviour of lycaenids in ant nests requires maintaining a healthy nest of ants and lycaenids in an artificial environment. This presents additional challenges (see Claassens, 1974). One of the first steps in this process is to discover the correct species of ant. Whilst this may seem straightforward, the taxonomy of ant genera such as *Anoplolepis* and *Crematogaster* is not (H.G. Robertson, pers. comm.).

Materials & Methods

Localities in Namaqualand were visited and were mostly those already well known to lepidopterists, as it was life-history data of lycaenid butterflies that was sought. *Thestor* eggs were obtained in the same manner as described in Claassens & Heath (1997) and Heath & Claassens (2000). A female *Thestor riley* Pennington was collected on 1st January 2007 from high up on the Helderberg Mountain, Somerset
West. A partial nest of *Anoplolepis custodiens* (F. Smith) (Formicinae) ants was also collected from the same locality, and housed in a formicarium (see Claassens 1974; Claassens & Heath, 1997 and Heath & Claassens, 2000). Searching for juvenile stages of *Chrysoritis* and *Aloeides* species consisted of examining the bases of potential food-plants at localities where the butterflies are known to fly. A much closer inspection was made if ants were present on the plant. Late instar larvae were sometimes collected and reared to adults to confirm their identity. These larvae were each placed in a small plastic container (3 cm diameter x 12 cm deep) together with two attending ants and sprigs of the food-plant. Usually, only the final instar larvae were collected, as the sprigs of food-plant seldom stay fresh for more than a few days, and earlier instars would be unlikely to survive. For each butterfly larva collected, a further dozen ants were placed in a vial containing ethanol for subsequent morphological and molecular study. Wherever possible, digital photographs were taken of larvae *in situ*, whilst food-plant and all relevant data were recorded in a personal database (AH). Some of these photographs are reproduced here; all taken by the authors, except for the adult *Chrysoritis natalensis*, taken by R. Dobson. Note that many earlier publications list *Zygophyllum* as a food-plant of *Chrysoritis* and *Aloeides* species. All of these *Zygophyllum* species are currently placed in the genera *Roepera* or *Tetraena* (Zygophyllaceae); hence *Zygophyllum flexuosum* is now known as *Roepera flexuosa*, and *Z. retrofractum* is now *Tetraena retrofracta*. These changes, and others, have been incorporated in the tables of food-plants and ant-associations for *Chrysoritis* and *Aloeides* given below. Several new ant-association and food-plant records are included and are based on unpublished observations (AH) during the past four years. We have attempted to list the earliest published record for each food-plant entry in the tables. Currently, the principal way to separate *Crematogaster liengmei* For. from *C. peringueyi* Emery is by the number of antennal segments; the former having 10 and the latter 11. It is possible that some ant taxa contain cryptic species (see Heath, 1997; Eastwood *et al.*, 2006); however, ants are treated herein according to current taxonomy. Identification (AH) of ants was based on earlier identifications by, and subsequent consultations with H.D. Robertson (Iziko South African Museum, Cape Town).

Results & Discussion

1. *Thesstor rileyi* Pennington, 1956
 A female *T. rileyi* was allowed to oviposit on the sides of a cardboard box without ants being present. A week later the eggs were placed in the atrium of a formicarium. The ants (*Anoplolepis custodiens* Smith (Formicinae)) showed some interest in the eggs, with up to four ants at times attending a single egg. The eggs started hatching eleven days after being laid and the ants showed considerable interest when the larvae emerged from the shells (Figs 1-4, plate no. 1). The eggshells were not eaten by the larvae. The larvae would occasionally rear up in front of an ant as if begging to be fed but trophallaxis was not observed. Ants would wave their antennae over the larvae and eventually pick one up and take it into the nest. Inside the plaster nest, the larvae were placed near the perimeter; some of these had an ant in attendance. A few days
later, all the larvae were dead, but there was no evidence that the ants had deliberately killed the larvae (see also Heath & Claassens, 2003).

The behaviour of these newly-hatched *Thestor rileyi* larvae in captivity was similar to that observed on earlier occasions in *T. yildizae* Koçak and *T. rileyi* by Heath & Claassens (2000, 2003). The rearing up behaviour of the larvae may suggest that they 'expected' an interaction, and their actions may have induced the ants to grasp them and take them into the nest. The puzzle arising from the subsequent death of the larvae (on this and earlier occasions) is to identify their natural food during the early instars, since they are all assumed to have starved to death, as opposed to having been killed. Williams & Joannou (1996) raised the first three instars of *T. basutus capeneri* Dickson on the grass-infesting coccid *Pulvinaria iceryi* (Signoret) (Hemiptera: Coccidae) infesting grass, but the montane fynbos habitat of *T. yildizae* and *T. rileyi* does not normally support grass. Several attempts have been made to locate Hemiptera within the colonies of *T. yildizae* and *T. rileyi* but without success. However, in the final two instars both species are known to feed (trophallaxis) on the regurgitations of *Anoplolepis custodiens* ants (Claassens & Heath, 1997; Heath & Claassens, 2000). The observation, in captivity, of first instar larvae of *T. yildizae* and *T. rileyi* being carried into the nest suggests that this would also happen under natural conditions and form part of their normal behaviour. There was no sign of the larvae being eaten by the ants. One possibility is that in nature the larvae feed on organic detritus within a natural ant nest. Since an accumulation of detritus is usually absent in newly created artificial nests, this would explain the mortality of larvae reared in artificial conditions. Organic detritus is considered to be a probable supplementary food source for late instar *T. basutus* (Heath & Claassens, 2003: 9) and it is also implied ("droppings") by Clark & Dickson (1971: 253) for *T. protunnum aridus* van Son. A less likely possibility is that a very small percentage of larvae manage to infiltrate the area where ant larvae are tended, and are thereafter sustained in cuckoo fashion by trophallaxis, or by feeding on the brood. A more complete understanding of the early behaviour of *Thestor* larvae is critical to developing conservation strategies for these species.

2. *Aloeides barklyi* (Trimen, 1874)

On 3rd September 2006 several *A. barklyi* (Fig. 5, plate no. 2) adults of both sexes, were observed flying on a gentle north-west slope at Grootlei Pass (30°12.945'S 17°45.032'E) south-west of Kamieskroon. Four females were separately observed and each one oviposited directly on the hard-packed sandy-gravel substrate, never on or close to a plant. Oviposition occurred on the ground, both in direct sunlight between various aridaceous plants, and in shade below small rock overhangs. Although a variety of plants were in the vicinity, none appeared to be likely as food-plants, and the observed females favoured none. A few ants were observed in the vicinity of the oviposition sites and these were later identified as *Lepisiota capensis* Mayr (Formicinae). One egg was collected and placed in a vial of ethanol. The ovipositing behaviour of *A. barklyi* females strongly suggests an aphytophagous life history. There are records of phytophagous *Aloeides* (and the closely related genus
Erikssonia Trimen) ovipositing on or in soil (Heath & Claassens, 2003: 11) but in these cases it took place beneath or beside a food-plant. In the case of *A. barklyi* oviposition was not associated with any plant, but appeared to be associated instead, with ant trails. *Lepisiota* ants have repeatedly been recorded associating with *Aloeides* and *Erikssonia* larvae (see Heath & Claassens, 2003; Henning, 1984a; Edge, 2005b; Williams, 2006, and this paper). Grootvlei Pass (Fig. 6, plate no. 2) is easily accessible and on a gentle slope with few rocks, unlike most other *A. barklyi* localities, and seems ideally suited to further studies.

3. *Aloeides damarensis* (Trimen, 1891)
Clark & Dickson (1971) recorded an attempt to rear a specimen of *A. d. damarensis* from an ovum on a species of *Aspalathus* (Fabaceae). Unfortunately, the larva died before completing its second instar, and the reason for its death was not given. *A. d. damarensis* adults occur together with *A. barklyi* at Grootvlei Pass, neither of whose food-plant could be determined, and so they could also possibly be aphytophagous.

4. *Aloeides nollothi* Tite & Dickson, 1977
Several larvae and pupae of *A. nollothi* have been collected at Groenriviermond over the past few years (AH). The larvae were found feeding on a species of *Roepera* (Zygophyllaceae) and on *Hermannia* (Sterculiaceae), and were always attended by *Lepisiota capensis* Mayr ants (Fig. 7, plate no. 3). On one occasion at Hondeklip Bay, as many as eight 3rd instar larvae were found together beneath *Roepera flexuosa* (Eckl. & Zeyh.) Beier & Thulin (Fig. 8, plate no. 3). The larvae normally rest in crevices in the plant stem, often below the surrounding substrate. The pupae are sometimes found where the larvae had previously rested, or in the surface leaf litter surrounding the food-plant.

5. *Aloeides bamptoni* Tite & Dickson, 1977
On 24th August 2005 a search was made for juvenile stages of *A. bamptoni* Tite & Dickson at a locality 10 km north of Steinkopf (29°11.821'S 17°48.615'E). The adults were flying in a dry gulley on the east side of the N7 road. In the middle of this population a 4th instar larva was found feeding on a species of *Hermannia* and tended by *Lepisiota capensis* ants (Fig. 9, plate no. 3). The larva was retained in a vial of ethanol for subsequent DNA analysis.

6. *Aloeides pringlei* Tite & Dickson, 1976
A search was made (AH) on 15th November 2004 for early stages of *A. pringlei* at its type locality on the slopes of the Groote Winterberg (Fig. 10, plate no. 4) in the Eastern Cape Province. The adults of both sexes were flying in good numbers, so most of the pupae would have eclosed. However, a search in an ant nest beneath a rock revealed a final instar larva, which was quickly herded out of sight by host ants before it could be photographed. Later, a pupa was found in a nest beneath another rock (Fig. 11, plate no. 4); a female emerged a few days later. The larva and pupa were found in separate nests of *Lepisiota capensis* ants hidden beneath moderate-sized flat slabs of rock. Neither of these nests was within two metres of any plant other than grass, although a species of *Felicia* (Asteraceae) was common in the general area. In view of the close
relationship with *A. pallida* Riley, it seems probable that the larvae are aphytophagous or partly so. This suggestion is based on the observations of Heath & Claassens (2003) who recorded *A. p. grandis* Tite & Dickson in captivity, feeding solely on ant eggs during four months of its final instar (Fig. 12, plate no. 4). An undescribed subspecies of *A. pallida* Riley was observed ovipositing on the substrate close to an entrance to an ant nest (Edge, 2005b), suggesting the first instar would probably enter, or be taken into the nest, on hatching. These observations almost certainly imply an aphytophagous life history.

7. *Aloeides apicalis* Tite & Dickson, 1968
In 1999, larvae were found under a flat stone in a corral beneath *Aspalathus spinosa* L. (Fabaceae) at Koringsberg, Moorreesburg, attended by *Monomorium fridae* Forel (Myrmecinae) ants. The ant nest was located a few metres away (Heath & Claassens, 2000). On 20th September 2007, two pupae were found in the sand beneath two plants of *Roepera teretifolia* (Schltr.) Beier & Thulin (Zygophyllaceae) 7 km south of Lambert's Bay. These pupae were also tended by *M. fridae* Forel ants from a nest several metres away. The pupae eclosed as *A. apicalis* several days later. The dorsal nectary organ (DNO) was absent in all the final instar larvae, although examination of a frozen section revealed an underlying DNO structure beneath the cuticle (AH unpubl.). In these and other cases where early stages have been found (AH), they were closely associated with a food-plant and are regarded here as phytophagous.

8. *Chrysoritis braueri* (Pennington, 1967)
On the 27th November 2007, AH & ZAK were shown a locality (32°25.831'S 26°10.775'E) for *C. braueri* by Ernest Pringle, as well as a known food-plant *Lotononis carnosa carnosa* (Eckl. & Zeyh.) Benth. (Fabaceae) of this butterfly (see Edge & Pringle, 2006, also addendum in *Metamorphosis* 18: 45 (2007). The site (Fig. 13, plate no. 5) was revisited the following day and several clumps of a species of *Thesium* Linnaeus (Santalaceae) in the vicinity of the *C. braueri* population were observed and some of these were carefully examined. A total of twelve larvae were discovered at the base of various clumps of *Thesium*. One larva was found inside a fibrous shelter made by the ants and attached to the side of a rock (Fig. 14, plate no. 5). Three of the larvae were in their final instars and hence were collected together with food-plant and ants (Fig. 15, plate no. 5). The younger larvae (Fig. 16, plate no. 6) were left in situ, except for two that were accidentally damaged; these were placed in a vial of ethanol for subsequent molecular study. The three final instar larvae continued to feed on the *Thesium* and were attended by ants in captivity. They subsequently pupated and emerged (16th to 18th December 2007) as one male and two female *C. braueri*. The ants infested a number of *Thesium* clumps, but a carton nest (partly hidden between rocks) was clearly the epicentre of the ant colony. Subsequent examination of the ants showed they were referable to a *Crematogaster* sp. near *peringueyi* Emery.

Four of the authors visited the Kleinsee area in September 2006, and some early instar larvae believed to be *C. pan lysander* were found on *Roepera flexuosa* (Eckl.
Beier & Thulin (Zygophyllaceae), where they were tended by *Crematogaster liengmei* For. (Myrmicinae) ants. Unfortunately, they could not be reared because the food-plant, once cut, is short-lived. Two further visits were made to the Kleinsee area during August and September 2007. On 20th August 2007, 10 km south of Kleinsee (29°43.968'S 17°05.467'E) final instar larvae of *C. pan lysander* were found feeding on *Roepera flexuosa* and tended by *C. liengmei* ants. These larvae pupated and emerged as *C. p. lysander* some weeks later.

10. *Chrysoritis pan lysander* (Pennington, 1962) (= *Poecilmitis atlantica* Dickson)
On 10th August 2005, beside the T-junction north-west of Leipoldtville (32°14'S 18°28'E), several females of *C. pan lysander* (Pennington) were observed ovipositing on different *Atriplex bolusii* C.H. Wright (Amaranthaceae) plants (Fig. 17, plate no. 6) infested with *Crematogaster peringueyi* Emery (Myrmicinae) ants. A pupa was found at the base of one of these plants that later eclosed as a female *C. pan lysander*. On 11th December 2007, at precisely the same locality, a penultimate instar larva was found (Fig. 18, plate no. 6). Adult females have also been seen in close proximity to *Chrysanthemoides incana* (Burm. f.) Norl. (Asteraceae) at Leipoldtville and at nearby Lambert's Bay, and it is probable that both food-plants are used in this general area (see also Dickson & Kroon, 1978).

11. Dual ant-associates for *Chrysoritis perseus* (W.H. Henning, 1977) and *C. pan* (Pennington, 1962)
At Leipoldtville, *C. pan lysander* has been observed associating with the ant *Crematogaster peringueyi* (11 antennal segments), whilst nearer Cape Town, the nominate subspecies associates with *C. liengmei* (10 antennal segments). The populations of *C. pan lysander* further north in the Namaqualand west coast region (Groenriviermond to Kleinsee) also associate with *C. liengmei* ants. A similar dichotomy of ant-association occurs with *Chrysoritis perseus* (W.H. Henning). At Hondeklip Bay, this species associates with the ant *C. melanogaster*, but at Lambert's Bay it associates with *C. peringueyi*. Between these two localities, at Groenriviermond, they associate with one of either ant species (Heath & Pringle, 2007). Until recently, it was thought that each *Chrysoritis* species associated with only one species of ant, but these myrmecophilous associations appear to vary geographically, a situation that could lead to genetic divergence between butterfly populations of the same species.

12. *Chrysoritis trimeni* (Riley, 1938)
On 24th August 2004 at McDougall's Bay, Port Nolloth, a final instar larva was found on *Roepera morgsana* (L.) Beier & Thulin (Zygophyllaceae) tended by *Crematogaster peringueyi* ants. The following day, further inland at 13 km east of Port Nolloth (29°17.403'S 16°59.629'E), two final instar larvae were found under a species of *Thesium* (Santalaceae), also tended by *C. peringueyi* ants. All of these emerged as *C. trimeni* (Heath & Pringle, 2007). On 19th August 2007 a second instar and two final instar larvae of *C. trimeni* were found just behind the coastal dunes (29°43.110'S 17°03.706'E) south of Kleinsee, feeding on *Roepera flexuosa* (Eckl. &
Zeyh.) Beier & Thulin (Zygophyllaceae) (Fig. 19, plate no. 7). Also, two pupae were found under Osteospermum oppositifolium (Aiton) B. Nord. (Compositae). Both pupae and larvae were tended by C. peringueyi ants. The larvae eventually pupated, and all eclosed some weeks later as C. trimeni.

13. Multiple food-plants
The food-plants of Chrysoritis trimeni are now known to include four species in the families Zygophyllaceae, Santalaceae and Asteraceae (see above), which represents an unusually broad diet for a fairly local species. Two food-plants are now recorded for C. braueri (Santalaceae and Fabaceae), where previously it was thought to utilize only one (Edge & Pringle, 2006 and this study). Five food-plants, belonging to three families, are recorded for C. pan. Seven food-plant species are recorded for C. palmus and nine recorded so far for C. thysbe. All these observations demonstrate that, given the presence of suitable ants, these species are able to exploit a wide variety of plants (Heath & Pringle, 2007 and this study).

14. Chrysoritis trimeni and Chrysoritis pan lysander
In the general area 5-15 km south of Kleinsee, C. pan lysander and C. trimeni were found flying parapatrically. In general, males of C. pan lysander in this region prefer the smaller prominences, whilst those of C. trimeni prefer flatter ground or shallow depressions closer to the sea-shore. Individuals of C. trimeni in this area varied considerably in size. The smaller specimens were indistinguishable from those of C. pan lysander (=williami), except the latter usually had lighter undersides to the hind wings. This distinction is not consistent however, as winter specimens of C. pan lysander also have dark undersides (AH pers obs.). Note that the black upper side wing margins of many (but not all) C. trimeni from Kleinsee are proportionally broader, and the black spots are larger, than in typical specimens further north at McDougall's Bay. Hence the two taxa, lysander and the smaller specimens of trimeni, are hard to differentiate. Over the years, several of these smaller specimens have been collected from 10-13 km east of Port Nolloth, these had proportionally larger spots and broader margins than those from the nearby type locality at McDougall's Bay. As a result, they also resemble C. pan lysander, but their juvenile stages associate with Crematogaster peringueyi ants, as do those of C. trimeni. However, in the west coast region north of Lambert's Bay, including Kleinsee, C. pan lysander associates with Crematogaster liengmei ants (see Heath & Pringle, 2007: 24). In his description of Poecilmitis dicksoni (here treated as C. pan lysander), W.H. Henning (1977) noted that it had often been confused with C. trimeni, and went on to state that it differed by being smaller, having a broader black border, darkened veins and paler 'flatter' underside. It has become apparent that none of these characters is consistent; hence the two taxa may still be confused. Until now, C. pan lysander and C. trimeni have not been recorded flying in the same area. One wonders how closely related they are, and if C. trimeni could perhaps have split (speciated) from the common ancestor of C. pan lysander and C. trimeni in this Kleinsee area, by means of a shift in ant-associate. Hopefully the former question at least, will be answered using molecular data.
15. *Chrysoritis aridus* (Pennington, 1953)
A known collecting locality for *C. aridus* (31°00.958'S 17°47.133'E) near Kotzesrus was visited on the 2nd and again on the 9th of September 2007. No juvenile stages were found, but the predominant species of ant in the area was found to be *Crematogaster melanogaster* Emery, which was present on some plants of both a *Roepera* sp. and *Thesium*. We strongly suspect that *C. melanogaster* may be the ant associate of *C. aridus* in this locality.

16. *Chrysoritis natalensis* (van Son, 1966)
A visit to Oslo Beach, KwaZulu-Natal was made on 2nd December 2007 to search for the ant associate of *C. natalensis* (Fig. 20, plate no. 7). No adults were seen at the known locality but *Crematogaster* ants were present among the *Chrysanthemoides monilifera* (L.) Norl. (Asteraceae) at the precise spot where females have been captured in the past (S.F. Woodhall, pers. comm.). Samples were taken of these ants, which were subsequently identified as *Crematogaster liengmei*. *C. monilifera* has been recorded as one of the two food-plants of *C. natalensis* (Pringle et al., 1994). Oviposition has also been recorded on *C. monilifera* in the presence of *C. liengmei* ants (Richard Dobson, pers. comm.).

17. *Chrysoritis chrysantas* (Trimen, 1868)
Heath & Pringle (2007: 8) noted that a larva believed to be that of *C. chrysantas* had earlier been found on *Salsola tuberculata* (Moq.) Fenzl. (Chenopodiaceae) attended by *Crematogaster melanogaster* Emery (Myrmicinae) ants north of Wallekraal. On 14th October, 2007, at precisely the same arid locality, a female *C. chrysantas* (Fig. 21, plate no. 8) was observed ovipositing on the same species of plant, on which *C. melanogaster* ants were also present (Fig. 22, plate no. 8). This lends further strong support for these being, respectively, a food-plant and ant-associate for this butterfly.

18. *Chrysoritis zonarius coetzeri* Dickson & Wykeham, 1994
Four specimens of *C. zonarius coetzeri* were collected from 8 km east of Hondeklip Bay (30°20.268'S 17°21.659'E) on 10th September 2007. They were flying around the silvery-blue variety of *Chrysanthemoides incana* (Burm. f.) Norl. (Asteraceae) bushes. Two of these specimens were placed in ethanol vials for subsequent DNA analysis. The discovery of *C. zonarius coetzeri* close to Hondeklip Bay is remarkable, as this is the first published record of this insect so far north, being over 200 km north-west of its previously only known (type) locality at Nieuwoudtville, and confirms a sight record by Harald Selb (pers. comm.) a few days earlier. This new locality record opens up a possibility that other local populations of this tiny butterfly may occur in Namaqualand.

Conclusion
Only four species of ants, belonging to two myrmicine genera, associate with the 42 currently acknowledged species of *Chrysoritis* (listed in Table 2); while 19 plant genera from 13 families have so far been recorded as food-plants. As many as nine
species of food-plant may be used by a single *Chrysoritis* species; and some plants are used by many species, e.g. *Thesium* is a known or suspected food-plant for 24 taxa and *Roepera* for 26 taxa. In this context it appears unlikely that speciation has occurred as a result of a food-plant switch; however, an ant switch seems far more likely (see Pierce, 1984, 1987). *Chrysoritis* species that associate with two different ant species, e.g. *C. perseus* and *C. pan* could each be destined to split in accordance with their ant associates, especially if their distributions have geographic affinities. We have postulated above, that *C. trimeni* might have originated in this way. It remains for molecular studies to throw further light on these hypotheses. Based on small structural variations that H.G. Robertson found (Heath, 1997: 39) between populations of *Crematogaster* ants, particularly *C. liengmei*, it is possible that cryptic species may exist among these ants. This would further support the concept of diversification in *Chrysoritis* being associated with shifts in ant associates.

Determining accurate ant-associations can occasionally be difficult. For example, a *Camponotus* species of ant has, at times, been found together with a *Myrmicaria* or *Crematogaster* species of ant and close to *Chrysoritis* juveniles (Heath & Pringle, 2007: 8). Such instances have led to the mistaken conclusion that the former ants were the ant associates in those cases. Similar confusion occurred in a situation where a pupa of *Aloeides d. dentatis* was found in close proximity to a *Camponotus* ant, which happened to share space beneath a stone with its natural ant-associate *L. capensis* (see Pringle et al., 1994).

Aphytophagy is known in only one species of *Chrysoritis*, namely *C. dicksoni* (Gabriel). In this instance, reliance on trophallaxis was observed in the first, second, and final larval instar; other instars not having been studied (Heath, 1998). Coupled with observations that oviposition occurs on a wide variety of plants that larvae refused to eat (Clark & Dickson, 1971), parsimony would suggest that aphytophagy is probably the behaviour in all larval instars. In *Aloeides*, some species appear to be aphytophagous. Unfortunately, none of these have been studied throughout their juvenile stages. The final instar larva of *A. pallida grandis* was observed, in captivity, to feed solely on ant eggs, and did not forage outside the ant nest during its four months as a final instar larva (Heath & Claassens, 2000, 2003). In captivity, the larvae of some *Aloeides* species are recorded to have survived feeding on vegetation into their second instar and then died, e.g. *A. p. pallida* and *A. d. damarensis* (Clark & Dickson, 1971). Reasons for these deaths were not given, but the possibility exists that these larvae are aphytophagous in nature as we have suggested above, in which case their ability to feed on vegetation throughout their first instar may simply be a relict of ancestral phytophagy.

The dorsal nectary organ (DNO) first appears in the 3rd larval instar of *Aloeides* species (Clark & Dickson, 1971; Heath & Claassens, 2000) and is present in subsequent instars; however, in some species the DNO is lost in the final instar. This loss is known to occur in *A. depicta* Tite & Dickson, *A. pallida* Tite & Dickson, *A. thyra* (Linn.), *A. apicalis* Tite & Dickson, and *A. dentatis* (Swierstra) (see Heath &
Fig. 1: *Anoplolepis custodiens* ants tending eggs and first instar larva of *Thestor rileyi*.

Fig. 2: *Anoplolepis custodiens* ants tending first instar larvae of *Thestor rileyi*.

Fig. 3: *Anoplolepis custodiens* ant tending first instar larva of *Thestor rileyi*.

Fig. 4: *Anoplolepis custodiens* ant tending first instar larva of *Thestor rileyi*.
Fig. 5: Underside of gravid female of *Aloeides barklyi*. Grootvlei Pass, south-west of Kamieskroon, 30°12.945′S 17°45.032′E

Fig. 6: Habitat of *Aloeides barklyi* and *Aloeides damarensis*, Grootvlei Pass, south-west of Kamieskroon, 30°12.945′S 17°45.032′E
Fig. 7: Late instar larvae of *Aloeides nollothi* with a *Lepisiota capensis* ant.

Fig. 8: Eight third instar larvae of *Aloeides nollothi* and a *Lepisiota capensis* ant.

Fig. 9: Fourth instar larva of *Aloeides bamptoni* feeding on a *Hermannia* species.
Fig. 10: Habitat of *Aloeides pringlei* on the slopes of The Groote Winterberg, Eastern Cape.

Fig. 11: A pupa of *Aloeides pringlei* in a *Lepisiota capensis* ant nest beneath a slab of rock.

Fig. 12: Final instar larva of *Aloeides pallida grandis* in captivity, being tended and fed by *Lepisiota capensis* ants.
Fig. 13: Habitat (foreground) of *Chrysoritis braueri* on the farm Huntly Glen near Bedford, Eastern Cape.

Fig. 14: Penultimate instar larva of *Chrysoritis braueri* in a partly opened fibre shelter constructed by *Crematogaster peringueyi* ants.

Fig. 15: Final instar larva of *Chrysoritis braueri* tended by a *Crematogaster peringueyi* ant.
Fig. 16: Fourth instar larva of *Chrysoritis braueri* on a species of *Thesium*.

Fig. 17: Female *Chrysoritis pan lysander* alighting on a larval food-plant, *Atriplex bolusii*.

Fig. 18: Penultimate instar larva of *Chrysoritis pan lysander* being tended by *Crematogaster peringueyi* ants at Leipoldtvile.
Fig. 19: Final instar larva of *Chrysoritis trimeni* being tended by a *Crematogaster peringueyi* ant at Kleinsee.

Fig. 20: Male of *Chrysoritis natalensis*
Fig. 21: Female of *C. chrysantas* basking.

Fig. 22: Female of *C. chrysantas* resting on *Salsola tuberculata*.
Claassens 2000, 2003; S.F. Henning, 1983a). As the DNO can play a vital role in the maintenance of ant-lycaenid association (Pierce et al., 2002), its loss implies that a change in the relationship between ant and lycaenid may have taken place. We can only speculate as to why these changes occur, along with so many other intriguing and, as yet, unanswered questions concerning the juvenile stages of these myrmecophilous lycaenids.

Table 1. Trophic and ant-associates for the genus Aloeides

<table>
<thead>
<tr>
<th>Aloeides taxon</th>
<th>Ant species</th>
<th>Food-plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. apicalis</td>
<td>M. fridae</td>
<td>Aspalathus spinosa L. (Fabaceae); Roepera teretifolia (Schltr.) Beier & Thulin; (Zygophyllaceae)</td>
</tr>
<tr>
<td>A. aranda</td>
<td>P. capensis</td>
<td>Oviposited in sand beneath Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. bamptoni</td>
<td>L. capensis</td>
<td>Hermannia sp. (Sterculiaceae)</td>
</tr>
<tr>
<td>A. barklyi</td>
<td>L. capensis</td>
<td>Possibly aphytophagous (by inference)</td>
</tr>
<tr>
<td>A. caffrariae</td>
<td>Unrecorded</td>
<td>Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. carolynnae carolynnae</td>
<td>Unrecorded</td>
<td>Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. clarki [see Note 1 below]</td>
<td>Monomorium sp.</td>
<td>Reared to 4th instar on Aspalathus sp.; Oviposited in sand below Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. damarensis damarensis</td>
<td>Unrecorded</td>
<td>Possibly aphytophagous. Partly reared on Aspalathus sp. but died during 2nd instar</td>
</tr>
<tr>
<td>A. damarensis mashona</td>
<td>Unrecorded</td>
<td>Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. dentatis dentatis</td>
<td>L. capensis</td>
<td>Hermannia depressa N.E. Br. (Sterculiaceae); Lotonotis eriantha Benth. (Fabaceae)</td>
</tr>
<tr>
<td>Species</td>
<td>Host Plant</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>A. dentatis maseruna</td>
<td>L. capensis</td>
<td>Hermannia jacobefolia (Turcz.) R.A.Dyer (Sterculiaceae)</td>
</tr>
<tr>
<td>A. depicta</td>
<td>L. capensis</td>
<td>*Reared to 4th instar on Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. gowani</td>
<td>Unrecorded</td>
<td>*Reared through on Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. henningi</td>
<td>Unrecorded</td>
<td>*Reared through on Aspalathus sp. (Fabaceae); Hermannia depressa N.E. Br.</td>
</tr>
<tr>
<td>A. lutescens</td>
<td>Unrecorded</td>
<td>Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. molomo krooni</td>
<td>Unrecorded</td>
<td>Sida ovata Forssk. (Malvaceae)</td>
</tr>
<tr>
<td>A. molomo coalescens</td>
<td>Unrecorded</td>
<td>*Oviposited in sand beneath Gnidia sp. (Thymelaeaceae)</td>
</tr>
<tr>
<td>A. nollothi</td>
<td>L. capensis</td>
<td>Hermannia sp. (Sterculiaceae); Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin (Zygophyllaceae)</td>
</tr>
<tr>
<td>A. pallida pallida</td>
<td>Unrecorded</td>
<td>*Reared only to 2nd instar on Aspalathus sp.</td>
</tr>
<tr>
<td>A. pallida grandis</td>
<td>L. capensis</td>
<td>*Possibly aphytophagous (27 carnivorous final instar)</td>
</tr>
<tr>
<td>A. pallida ssp. (undescribed)</td>
<td>L. capensis</td>
<td>*Aphytophagous (by inference)</td>
</tr>
<tr>
<td>A. pierus</td>
<td>L. capensis</td>
<td>Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>A. pringlei</td>
<td>L. capensis</td>
<td>*Aphytophagous (by inference)</td>
</tr>
<tr>
<td>A. rossouwi</td>
<td>Lepisiota sp.</td>
<td>Unknown</td>
</tr>
<tr>
<td>A. susanae</td>
<td>Unrecorded</td>
<td>*Oviposited on small prostrate legume</td>
</tr>
<tr>
<td>A. thyra thyra</td>
<td>L. capensis</td>
<td>*Aspalathus laricifolius Berg.; A. acuminatus Lam.; A. cymbiiformis DC; A. acuminatus Lam. subspecies pungens (Thunb.) R. Dahlgr. (Fabaceae)</td>
</tr>
</tbody>
</table>
A. t. trimeni Unrecorded *Reared through on *Aspalathus* sp. (Fabaceae); *Hermannia depressa* N.E. Br. (Sterculiaceae)

Note 1: *Aspalathus spinosa* var. *spinosa* is common at the two Coega colonies of *Aloeides clarki*, but absent from the colony at Sundays River mouth. The plant under which the stone was situated and where a 4th instar larva was found (attended by a *Monomorium* sp. of ant) was *Melolobium exudans* Harv. (Fabaceae), but another nearby plant was *Nylandtia spinosa* (L.) Dumort. (Polygalaceae) (Pringle, pers. comm.). Neither of these have been listed in the table above due to the degree of uncertainty expressed by Pringle.

References for Tables 1 & 2
1 Clark & Dickson (1971); 2 Heath (1997a); 3 Dickson (1943); 4 Heath (2001); 5 Henning S.F. (1983a); 6 Heath (unpubl.); 7 Dickson (1948); 8 Heath et al. (this study, see text); 9 Clark & Dickson (1956); 10 Heath & Pringle (2007); 11 Heath & Claassens (2003); 12 Dickson (1959); 13 Pringle et al. (1994); 14 Owen-Johnston (1991); 15 Heath (1998); 16 Dickson & Kroon (1978); 17 Terblanche & Hamburg (2004); 18 Dickson (1952); 19 Dickson (1975); 20 Dickson (1940); 21 Dickson (1965); 22 Dickson (1953); 23 Dickson (1947); 24 Dickson (1945); 25 Edge & Pringle (2006) + addendum in *Metamorphosis* 18: 45 (2007); 26 Claassens & Dickson (1974); 27 Heath & Claassens (2000); 28 Henning, G.A. & Henning, S.F. (1989); 29 Henning, G.A. (1993); 30 Pringle (pers. comm.); 31 Pringle (1998); 32 Edge (2005a); 33 Edge (2005b); 34 Williams (2006); 35 Claassens & Dickson (1977); *Unconfirmed.

Table 2. Trophic and ant associates for the genus Chrysoritis

Four ant taxa are recorded, namely *Crematogaster peringueyi* For., *C. liengmei* Emery, *C. melanogaster* Emery and *Myrmicaria nigra* (Mayr) (Myrmicinæae).

<table>
<thead>
<tr>
<th>Chrysoritis taxa</th>
<th>Ant species</th>
<th>Larval food-plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. oreas</td>
<td>2 M. nigra</td>
<td>Thesium sp. (Santalaceae)</td>
</tr>
<tr>
<td>C. dicksoni</td>
<td>1 C. peringueyi</td>
<td>Aphytophagous (trophallaxis)</td>
</tr>
<tr>
<td>C. phosphor phosphor</td>
<td>Unrecorded</td>
<td>Unknown</td>
</tr>
<tr>
<td>C. phosphor borealis</td>
<td>Unrecorded</td>
<td>Unknown</td>
</tr>
<tr>
<td>C. chrysaor</td>
<td>3 C. liengmei</td>
<td>Cotyledon orbiculata L. (Crassulaceae); 16 Rhus sp. (Anacardiaceae); Tetraena retrofracta (Thunb.) Beier & Thulin. (Zygophyllaceae); 6 Chrysanthemoides incana (Burm. f.) Norl. (Asteraceae); 2 Acacia karoo Hayne (Fabaceae)</td>
</tr>
</tbody>
</table>

<p>| C. chrysaor f. lycia | 2 C. liengmei | 13 Tylecodon paniculatus (L.f.) Toelken (Crassulaceae) |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Variety/Species</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. midas</td>
<td>2C. peringueyi</td>
<td>Diospyros austro-africana De Winter var. microphylla (Ebenaceae)</td>
</tr>
<tr>
<td>C. natalensis</td>
<td>2C. liengmei</td>
<td>Chrysanthemoides monilifera L. (Norl.) (Asteraceae); Cotyledon orbiculata L. (Crassulaceae)</td>
</tr>
<tr>
<td>C. aethon</td>
<td>4C. liengmei</td>
<td>Rhus zeyheri Sond. (Anacardiaceae); Crassula sp. (Crassulaceae)</td>
</tr>
<tr>
<td>C. aureus</td>
<td>4C. liengmei</td>
<td>Clutia pulchella L. (Euphorbiaceae); Diospyros lycioides Desf. (Ebenaceae)</td>
</tr>
<tr>
<td>C. lyncurium</td>
<td>2C. liengmei</td>
<td>Diospyros lycioides Desf. (Ebenaceae)</td>
</tr>
<tr>
<td>C. lycegenes</td>
<td>5C. liengmei</td>
<td>Diospyros lycioides Desf.; D. austro-africana De Winter (Ebenaceae); Myrsine africana L. (Myrsinaceae); Rhus sp. (Anacardiaceae); Chrysanthemoides monilifera L. (Norl.) (Asteraceae)</td>
</tr>
<tr>
<td>C. zeuxo zeuxo</td>
<td>2C. liengmei</td>
<td>Chrysanthemoides monilifera L. (Norl.) (Asteraceae)</td>
</tr>
<tr>
<td>C. zeuxo cottrelli</td>
<td>2C. liengmei</td>
<td>Chrysanthemoides monilifera L. (Norl.) (Asteraceae)</td>
</tr>
<tr>
<td>C. zonarius zonarius</td>
<td>2C. peringueyi</td>
<td>Diospyros incana (Burm. f.) Norl. (Asteraceae)</td>
</tr>
<tr>
<td>C. zonarius coetzeri</td>
<td>2C. peringueyi</td>
<td>Diospyros incana (Burm. f.) Norl. (Asteraceae)</td>
</tr>
<tr>
<td>C. felthami felthami</td>
<td>2C. peringueyi</td>
<td>Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin; R. sessilifolia (L.) Beier & Thulin; R. morgsana (L.) Beier & Thulin (Zygophyllaceae)</td>
</tr>
<tr>
<td>C. felthami dukei</td>
<td>6C. peringueyi</td>
<td>Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin; R. sessilifolia (L.) Beier & Thulin (Zygophyllaceae)</td>
</tr>
<tr>
<td>C. pyroeis pyroeis</td>
<td>7M. nigra</td>
<td>Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin; R. sessilifolia (L.) Beier & Thulin; R. morgsana (L.) Beier & Thulin (Zygophyllaceae)</td>
</tr>
</tbody>
</table>
C. pyroeis hersaleki Unrecorded 13Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin; 13R. sessilifolia (L.) Beier & Thulin (Zygophyllaceae)

C. chrysantas 8C. melanogaster 8Salsola tuberculata (Moq.) Fenzl. (Chenopodiaceae)

C. thysbe thysbe 9C. peringueyi 1Aspalathus spp.; 1Lebeckia plukenetiana E. Mey.; (Fabaceae); 1Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin; 1R. sessilifolia (L.) Beier & Thulin (Zygophyllaceae);
 13Chrysanthemoides monilifera L. (Norl.) (Asteraceae);
 6Thesium spp. (Santalaceae)

C. thysbe osbecki 6C. peringueyi 6Aspalathus spp.; 1Lebeckia plukenetiana E. Mey. (Fabaceae); 16Roepera flexuosa.; 16R. morgsana (L.) Beier & Thulin (Zygophyllaceae), 6Thesium spp. (Santalaceae);
 16Chrysanthemoides incana (Burm. f.) Norl. (Asteraceae)

C. thysbe psyche 2C. peringueyi 2Roepera sp. (Zygophyllaceae);
 6Thesium spp. (Santalaceae)

C. thysbe bamptoni 2C. peringueyi 2Roepera flexuosa E. & Z.; 6R. teretifolia (Schltr.) Beier & Thulin (Zygophyllaceae);
 6Thesium spp. (Santalaceae);
 13Lebeckia plukenetiana E. Mey. (Fabaceae)

C. thysbe schloszae 6C. peringueyi 10Roepera sp. (Zygophyllaceae)

C. thysbe mithras Unrecorded 32Chrysanthemoides monilifera L. (Norl.) (Asteraceae)

C. thysbe whitei 2C. peringueyi 2Chrysanthemoides monilifera L. (Norl.) (Asteraceae); 13Roepera sp. (Zygophyllaceae)

C. trimeni 10C. peringueyi 8Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin; 6R. morgsana (L.) Beier & Thulin (Zygophyllaceae); 10Thesium sp. (Santalaceae); 8Osteospermum oppositifolium (Aiton) B. Nord. (Compositae)
C. pan pan \(\rightarrow\) C. liengmei \(\leftarrow\) Chrysanthemoides incana (Burm. f.) Norl. (Asteraceae)

C. pan lysander (W. Coast) \(\rightarrow\) C. liengmei \(\leftarrow\) Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin; (Zygophyllaceae); *Osteospermum; C. oppositifolium (Aiton) B. Nord. (Asteraceae)

C. pan lysander (Leipoldtv'Il) \(\rightarrow\) C. peringueyi \(\leftarrow\) Atriplex bolusii C.H. Wright (Amaranthaceae); *Chrysanthemoides incana (Burm. f.) Norl. (Asteraceae)

C. pan hennigii \(\rightarrow\) C. liengmei \(\leftarrow\) Tetraena retrofracta (Thunb.) Beier & Thulin (Zygophyllaceae)

C. azurius \(\rightarrow\) C. peringueyi \(\leftarrow\) Roepera sp. (Zygophyllaceae)

C. adiridus \(\rightarrow\) C. melanogaster \(\leftarrow\) Chrysanthemoides incana (Burm. f.) Norl. (Asteraceae); *Roepera sp. (Zygophyllaceae); *Thesium sp. (Santalaceae)

C. turneri turneri Unrecorded \(\leftarrow\) Roepera sp. (Zygophyllaceae)

C. turneri wykehami \(\rightarrow\) C. liengmei \(\leftarrow\) Dimorphotheca cuneata (Thunb.) Less. (Asteraceae)

C. turneri amatola Unrecorded Unknown

C. uranus uranus \(\rightarrow\) C. liengmei \(\leftarrow\) Centella sp. (Apiaceae); Roepera sp. (Zygophyllaceae); Aspalathus spinosa L. (Fabaceae)

C. uranus schoemani Unrecorded \(\leftarrow\) Centella sp. (Apiaceae)

C. perseus (West Coast) \(\rightarrow\) C. melanogaster \(\leftarrow\) Roepera flexuosa (Eckl. & Zeyh.) Beier & Thulin (Zygophyllaceae); *Thesium sp. (Santalaceae); *Osteospermum oppositifolium (Aiton) B. Nord. (Asteraceae)

C. perseus (Lambert's Bay) \(\rightarrow\) C. peringueyi \(\leftarrow\) Roepera teretifolia (Schltr.) Beier & Thulin (Zygophyllaceae); *Thesium sp. (Santalaceae)

C. adonis adonis \(\rightarrow\) C. liengmei \(\leftarrow\) Roepera sp. (Zygophyllaceae); *Thesium sp. (Santalaceae)

C. adonis aridimontis Unrecorded Unknown

C. swanepoeli swanepoeli \(\rightarrow\) C. liengmei \(\leftarrow\) Thesium sp. (Santalaceae); *Tylecodon paniculatus (L.f.) Toelken (Crassulaceae)
<table>
<thead>
<tr>
<th>Species</th>
<th>Subspecies</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. swanepoeli hyperion</td>
<td>C. liengmei</td>
<td>Thesium sp. (Santalaceae)</td>
</tr>
<tr>
<td>C. irene</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>C. nigricans nigricans</td>
<td>C. liengmei</td>
<td>Unknown</td>
</tr>
<tr>
<td>C. nigricans zwartbergae</td>
<td>C. liengmei</td>
<td>Thesium spp. (Santalaceae)</td>
</tr>
<tr>
<td>C. nigricans rubescens</td>
<td>C. liengmei</td>
<td>Thesium sp. (Santalaceae)</td>
</tr>
<tr>
<td>C. palmus palmus</td>
<td>C. peringueyi</td>
<td>Berzelia intermedia (D. Dietr.) Schltld.; B. lanuginosa Brongn.; B. abrotanoides (L.) Brongn. (Bruniaceae); Chrysanthemoides monilifera L. (Norl.); C. incana (Burm. f.) Norl. (Asteraceae); Aspalathus sarcantha Vog.; A. carnosa Berg. (Fabaceae)</td>
</tr>
<tr>
<td>C. palmus margueritae</td>
<td>Unrecorded</td>
<td>[Probably as for nominate subspecies]</td>
</tr>
<tr>
<td>C. brooksi</td>
<td>C. peringueyi</td>
<td>Thesium sp. (Santalaceae); Roepora sp. (Zygophyllaceae); Aspalathus spinosa L. (Fabaceae)</td>
</tr>
<tr>
<td>C. brooksi tearei</td>
<td>C. peringueyi</td>
<td>Roepora sp. (Zygophyllaceae)</td>
</tr>
<tr>
<td>C. daphne</td>
<td>C. liengmei</td>
<td>Thesium sp. (Santalaceae)</td>
</tr>
<tr>
<td>C. plutus</td>
<td>C. peringueyi</td>
<td>Thesium sp. (Santalaceae); Roepora sp. (Zygophyllaceae)</td>
</tr>
<tr>
<td>C. blencathrae</td>
<td>C. liengmei</td>
<td>Dimorphotheca venusta (Norl.) Norl. (Asteraceae)</td>
</tr>
<tr>
<td>C. endymion</td>
<td>C. peringueyi</td>
<td>Thesium sp.; Thesidium sp. (Santalaceae)</td>
</tr>
<tr>
<td>C. rileyi</td>
<td>C. peringueyi</td>
<td>Thesium sp. (Santalaceae); Aspalathus sp. (Fabaceae)</td>
</tr>
<tr>
<td>C. pyramus pyramus</td>
<td>C. peringueyi</td>
<td>Osteospermum asperulum (DC) Norl. (Asteraceae); Thesium sp. (Santalaceae)</td>
</tr>
<tr>
<td>C. pyramus balli</td>
<td>C. peringueyi</td>
<td>Dimorphotheca montana Norl. (Asteraceae); Thesium sp. (Santalaceae)</td>
</tr>
<tr>
<td>C. violescens</td>
<td>C. peringueyi</td>
<td>Dimorphotheca cuneata (Thunb.) Less. (Asteraceae)</td>
</tr>
</tbody>
</table>
C. beaufortius beaufortius Unrecorded Dimorphotheca cuneata (Thunb.) Less. (Asteraceae);
 Chrysanthemoides monilifera L. (Norl.) (Asteraceae)

C. beaufortius charlesi ^C. peringueyi Dimorphotheca cuneata (Thunb.) Less. (Asteraceae)

C. beauf. stepheni (Calvinia) ^C. peringueyi Dimorphotheca cuneata (Thunb.) Less. (Asteraceae)

C. beauf. stepheni (Garies) ^C. peringueyi Osteospermum amplectans (Harv.) Norl. (Asteraceae)

C. beauf. sutherlandensis ^C. peringueyi Dimorphotheca cuneata (Thunb.) Less. (Asteraceae)

C. beulah Unrecorded Unknown

C. braueri ^C. peringueyi Thesium sp. (Santalaceae);
 Lotononis carnosa (Eckl. & Zeyh.) Benth. ssp. carnosa (Fabaceae);
 Roepera sp. (Zygophyllaceae)

C. penningtoni Unrecorded Unknown

C. orientalis ^C. liengmei Thesium sp. (Santalaceae)

C. pelion Unrecorded Unknown

Note 1: Pennington (1962) gives the food-plant of C. pan as Chrysanthemoides monilifera. This is clearly a misidentification of C. incana, as the former does not grow in the localities indicated, but the latter does.

Note 2: Henning, S.F. (1979) gives the food-plant of Poecilmitis kaplani (provisionally treated here as a polytopic population of C. beaufortius stepheni near Garies) as Dimorphotheca cuneata. This was corrected to Osteospermum amplectans in Heath (1997). D. cuneata grows in the Sutherland district, although the two plants are very similar and mature larvae transfer readily between the two (Heath & Pringle, 2007).

Note 3: Dickson & Kroon (1978) gave the food-plant of Chrysoritis aureus as Clutia galpinii Pax. (=C. pulchella); this was repeated by Owen-Johnston (1991) and Heath (1997). Clutia galpinii Pax. is a synonym of Clutia pulchella L. (Henning, S.F. 1983a).

Acknowledgements

We thank Dr A. Armstrong, Ezemvelo KZN Wildlife (KwaZulu-Natal Nature Conservation Service), the Western Cape Nature Conservation Board and Northern Cape Nature Conservation for permits and permission to study and collect material in areas under their jurisdiction. A grant from the Putnam Expeditionary Fund of the Museum of Comparative Zoology supported field studies made in 2007. Thanks to Ernest and Anne Pringle, also Steve and Jayne Woodhall for hosting us and providing localities of Chrysoritis species. Thanks also to Richard and Nita Dobson for showing us localities of C. natalensis in KwaZulu-Natal and providing an image of an imago for inclusion here. We acknowledge Jan Vlok for the identification of
some of the plants mentioned herein, and to the Plant Protection Institute, Tshwane for identifying *M. exudans* and *N. spinosa*. Dr H.G. Robertson (Iziko South African Museum, Cape Town) provided input on the ant taxonomy and identification referred to herein; to Ernest Pringle for sharing the latest knowledge on the food-plant and ants associated with *A. clarki*; and finally to Prof. Naomi Pierce (Harvard University) for comments on the manuscript.

References

An alternative hypothesis of mate attraction systems for nocturnal Lepidoptera
Moths ‘n things #3

H. S. Staude
hermann@busmark.co.za

In Moths 'n things #1 a number of examples are given which illustrate clearly that artificial light sources do not confuse a moth's ability to navigate and that moths are not involuntarily phototactic as is commonly stated in text books. In fact, moths will go to great lengths to penetrate barriers preventing them from reaching a light source, and they have the ability to completely ignore such a light source when they are intent on feeding (Staude, 2007).

In Moths 'n things #2 several examples are given of moth species that have made the transition from nocturnal to diurnal flight activity. In addition, a number of cases of moths in an apparent transition phase between the two lifestyles are reported on. In all these cases it was shown that these species were unable to make this transition and keep their traditional mate attraction systems unaltered. It was suggested that for some unknown reason the classical female pheromone mate attraction system used virtually exclusively by nocturnal moths seems not to work very well by day (Staude, 2008).

It is the above two phenomena, which I have repeatedly encountered while observing moths in nature for many years, that have led me to believe that they may be linked. To me it seems likely that some form of low intensity, short wavelength bioluminescence may exist in nocturnal Lepidoptera which plays a crucial auxiliary role in classical female pheromone mate attraction systems. I believe that it is probable that short wavelength, low intensity light (invisible to the human eye) is emitted by nocturnal moths as a secondary complementary system that makes it easier for males to home in on the pheromone-emitting female, which will then lead them to virgin females of the same species. It may be that this secondary system acts as a preliminary sorting process creating a 'disco' effect, a process that causes conspecific moths to congregate in communal areas, giving them a distinct advantage of finding mates, similar to what hill-topping and male LEK formation does in aiding diurnal mate attraction systems. It may even be that this acts as a dual navigation system making it easier for the male to locate the female. This secondary system, however, would only work when ambient background light levels are low. This means that the time periods at night for it to work would be restricted to dark moon and cloudy overcast periods when there is little background light pollution.

If the above hypothesis were proven to be true, a number of currently unexplained phenomena would fall neatly into place. It would explain why:
1. Moths are voluntarily attracted to artificial light sources.
Moths would respond to such a light source only when they are in mate seeking mode. They would ignore such a source if they are in feeding mode. This is precisely what we are observing (see Staude, 2007).

2. Moths find it hard to make the transition from a nocturnal to a diurnal lifestyle.
If mate attraction systems for nocturnal Lepidoptera include bioluminescence as the above hypothesis suggests then these would not work during daytime. This is exactly what we are observing to be the case (see Staude, 2008).

3. Different species of moths are attracted to different wavelengths of light.
Moths would only be attracted to the light if the source includes light of the specific wavelength they are trying to locate, if the above hypothesis were true. This seems precisely to be the case. Fluorescent tube manufacturers produce a light tube that primarily emits light in a spectrum of short wavelengths just above the UV range which they market as insect-attracting lights, and these work very well. Moth collectors, myself included, have tried 'black lights' with much reduced effect. Mercury Vapour lights work very well because they emit a broad spectrum of light of short wavelengths. A few years ago the electronics department of the company of one of LepSoc's members, John Joannou, produced a LED light source that would be lightweight and long-lasting, enabling collectors to set moth traps in places that are impossible to reach by vehicle. When asked what wavelength was needed it was decided to pick one in the middle of the range of the standard insect-attracting light. The results were poor. Moth diversity dropped, with only a few species being actively attracted to this light. We found in particular Hepialidae to favour this wavelength. Other light sources with the same or even less Lux output, such as 4-Watt fluorescent tubes with a wider spectrum of light emission attract a far greater diversity of moths.

4. Different species approach artificial light sources differently and settle at different distances from the light source.
This is a well-documented phenomenon (see Pinhey, 1975) and would make sense if the moths were gathering in a 'disco' fashion, but makes no sense if their flight patterns were being disrupted.

5. Moths are attracted to artificial light sources mainly during dark moon periods and overcast conditions.
This is the experience of most moth collectors you talk to. Ray Murphy of Mzuzu (Malawi), who has spent several decades in the field setting up light traps, comments that the number of moths being attracted to the trap increases significantly during the week preceding a new moon and diminishes rapidly after a new moon., and our success has certainly increased since we have been planning our moth trips around the new moon. This is exactly what one would expect to observe if the above hypothesis were true.
6. Moths living at high latitudes tend to become active in the late afternoon or at dusk.

The period of sufficient summertime darkness diminishes as one proceeds to higher latitudes and disappears as one reaches the Arctic Circle. This would increase the pressure on moths to complete their mate locating activities, if the hypothesis were true, and would force them to alter their behaviour or find an alternative mate attraction system or to make the transition to diurnalism as they occupy higher latitudes. This is precisely what is being reported. Many species of Geometridae become dusk-flying or increasingly diurnal as well as nocturnal at higher latitudes. This gradient is even observed in populations of single species (Hausmann, 2001, 2004). This strategy of extending their flight period would give them time to attend to activities other than mate attraction during this extended period, thereby saving the shorter dark period exclusively for mate attraction. In *Idaea seriata* (Schrank)(Geometridae: Sterrhinae) there is a geographical gradient in the incidence of light attraction, males being readily attracted in southern Europe but less often in central Europe (Hausmann, 2001). In these cases we are finding that cryptic moths become partially diurnal contrary to the normal situation at lower latitudes where the transition to diurnalism is invariably linked to aposematism. These phenomena would make perfect sense if the above hypothesis were true.

7. It is possible for males to find females over very large distances in spite of the very low quantities of pheromone molecules emitted by a single virgin female.*

It has been well documented that moths do have the ability to accomplish this stunning feat. It would be a lot less astonishing if the moths had a dual locating system, such as the above hypothesis suggests.

8. Male moths tend to lose their complex antennae after a species has fully made the transition to diurnalism.

Detecting light of very low intensity is not easy and antennae developed for the Voyager spacecraft to detect the photon residue of the Big Bang in space involved a series of platelets in which the weak signal is strengthened by the position of the platelets. In fact this antenna looks remarkably similar to those of some male nocturnal moths. If the antennae of nocturnal moths are indeed able to pick up low intensity light and if the above hypothesis were proved to be true, then it would not be surprising that these antennae look so similar to those developed by scientists to detect Big Bang residue. If the above hypothesis were true then one would expect sexual divergence of antennae in nocturnal moths and one would expect that moths would lose these complex antennae when they have fully made the transition to a diurnal lifestyle. This is precisely what we are observing.
9. More and more once common British moth species are becoming Red Data species in spite of an increase in suitable habitat and a decrease in air pollution and in the use of insecticides in recent years. This is one of the conclusions of a disturbing report by the Rothamsted Research group (Rothamsted, 2006) based on an intensive moth survey involving hundreds of survey points monitored daily over the period 1968-2002. This state of affairs probably also pertains in most other developed countries but has been overlooked because of the lack of similar extensive survey programmes. One possible reason for this baffling phenomenon would be that the increasing light pollution in Britain could be severely disrupting the moths' mate attraction systems, if the above hypothesis were true. This possibility is probably the most compelling reason why the above hypothesis should be urgently tested.

Bioluminescence has been well studied where it occurs in insects emitting light that is visible to the human eye such as firefly beetles (Lampyridae) (Scholtz et al., 1985). Photogenic organs are present in some insects such as the Lampyridae but a general distribution of luminescence is found in others (Collembola). The production of light accompanies an oxidative process which involves a substrate (usually luciferin) which is oxidized in the presence of an enzyme. A number of different substrates and enzymes are known. Insects generally have the ability to turn the process on or off (Wigglesworth, 1953). It seems that no incidence of bioluminescence has so far been found in Lepidoptera, but this does not mean that it does not exist, it merely means that nobody has bothered to look for something they have not yet observed. The chemical processes involved would not be easily detected if one was not aware of their existence in the first place, especially if they are not concentrated in an apparent organ as is the case in some insects.

So the logical next step would be to test if moths of both sexes, or virgin females in particular, actually emit light of a short wavelength and of an intensity that is too low for the human eye to detect. If this is true, then one would also have to test if different taxa emit light of different wavelengths. I am sure that the technology to detect light emissions of very low intensity exists today, but access to such a facility would be beyond my means.

The stated main purpose of the Moths 'n things series is to stimulate thought processes and to initiate research which can perhaps give us some answers to certain fundamental questions affecting Lepidoptera such as the ones raised here. Perhaps there is a reader out there who can do these experiments. The need to resolve this issue becomes urgent if one considers the possible implications to conservation as illustrated in point 9 above.

If these experiments can be conducted and if they prove the hypothesis correct, we will have some preliminary answers to the nine questions above and then we can at least do something about the dwindling moth populations in developed countries.
If these experiments prove the hypothesis to be false then I am afraid it is back to the drawing board and then the nine questions remain unanswered as before. It would also mean that I would have to apologise for the Mumbo Jumbo....but such are the risks of the series.

In Moths 'n things #4 I will feature the first contribution by one of our members as called for in Moths 'n things #1. A contribution by someone with whom I had the good fortune to share a number of fires in some of the most spectacular African settings. He has written a brilliant poetic piece, just what this series needs.....who and what about?..........well, you will just have to wait won't you.

Acknowledgements
Ray Murphy and John Joannou are thanked for their comments and input, as well as Jonathan Ball for providing me with pertinent literature.

References

ROTHAMSTED 2006. (No authors cited), *The state of Britain's larger moths*, a report by Butterfly Conservation & Rothamsted Research.

“I thought I'd died and gone to heaven”

Lindsay Durham* & Peter Ward
17 on Church Square, Leisure Isle, Knysna 6571
lindsaydurham@telkomsa.net

SMS received November 2007: 'I thought I’d died and gone to heaven.' Who on earth is this from I wondered.
Peter Ward.
SMS sent. R u o.k.
SMS received. Absolutely
SMS sent. Where r u
SMS received. Uganda. 450 or so butterflies netted 180 new for my collection and 20 unable to identify.
Now this is serious stuff between one Lepsoc member to another.
SMS sent. Send e-mail address I have a proposition!

It just so happened that having relocated to Knysna in October 2006, I was approached by some overseas visitors and asked if I would let my house to them for two months (February and March 2008). It seemed a good idea at the time and in the far distant future. But as the date got closer and closer I was getting anxious as to what/where I would go for eight consecutive weeks. And then Peter's sms arrived out of the blue. Now you tell me if the universe is not an amazing place - you just have to trust the process!

A session of frantic e-mails ensued, plus a horrendous surfing the net for airfares. Techno Gran asked British Airways for a costing to Entebbe which came back +-R 10,000 each way. SAA on the other hand came back under R 4,000 Jo'burg return. Hey??? BA were routing me via, via, via and who know where, to Entebbe and back! ….And the rest is history.

Here I am for two months as guest of the FD of Nile Breweries, Jinja, Uganda. Although Jinja is only 117 kms from Entebbe it takes anywhere between two and a half hours to four hours to do the journey. Traffic is congested in the towns, especially in Kampala. The road is tarred from Kampala to Jinja but badly cambered. It's not very wide with the drop off from the tar, donga-deep and people teeming the roadsides. Welcome to deepest darkest Africa. The countryside is magnificent dark green lush vegetation and bright red earth and dotted around the place are red-roofed houses. The main road goes right through Mabira Forest the place where heaven exists. The butterflies were hopping, so we pulled off to investigate further. A rather odd couple disembarked from the Toyota 4 x 4 - me in my 1" world travelling gear sporting a Panama Hat and Peter dressed for critter action. A quick rummage in the suitcase put that right, but I was too late for the *Tiramula petiverana* and the *Charaxes zingha* which Peter netted in some seriously amazing Chinese swipes over
my head. To my every 'what was that' Peter replied “what is this – looks like another new one for the records”. In amongst the swipes we did find time to put up a few traps. We walked the length of Buikwe Road to the sugar cane field on the southern side of the forest enraptured by the butterflies, the Red Tailed Monkeys, the Black and White Casqued Hornbill and the Great Blue Turaco. Abruptly the sky clouded over and HUGE raindrops fell from the sky. More and more and more of them! This was a tropical downpour of note and even the big trees with their dense canopies did not shelter us. The lovely red earth which I had so admired was a raging red river and as slippery as all hell. My takkies were not up to the job and Pete's boots became so waterlogged that he was carrying at least another 2 kgs on each foot. Progress was slow and the rain kept up relentlessly. And then it stopped! The sun came out and we began to steam - walking in a kind of vapour haze. It is such fun being a Lepidopterist!!!

No collecting outing ends without meticulous data capturing, so here's just a sample of the boring details from Mabira Forest (29700 ha of mostly pristine tropical rainforest):

Buikwe Road, Mabira Forest: 00°23.088'N 33°00.908'E, Alt. 1100 m

- Papilio bromius
- Papilio mechowi
- Papilio nobilis
- Papilio phorcas
- Belenois solilucis
- Acraea toggei
- Ankola fan
- Ceratrichia mabirensis
- Hypolimnas salmacis magnifica
- Junonia westermanni suffusa
- Antanartia delius delius
- Pseudoneptis bugandensis
- Charaxes bipunctatus ugandensis
- Palla usscheri
- Abisara neavei neavei
- Anthene hobleyi
- Libythea labdaca
- Tirumala petiverana
- Gnophodes betsimena diversa
- Etc….etc…

Radio Hill, Mabira Forest: 00°23.348'N 033°00.660'E, Alt. 1260 m

- Papilio hesperus
- Leptosia wigginsi
- Acraea penelope vitrea
Sallya garega garega
Neptis morosa
Charaxes zingha
Charaxes cynthia
Charaxes eupale
Euxanthe crossleyi
Falcuna orientalis
Tirumala formosa formosa
Ypthima albida
Etc…etc…

Damp Sand, Mabira Forest Centre: 00°23.790’N 033°01.373’E, Alt. 1050 m
Papilio lormieri
Belenois sudanensis
Appias sylvia ugandensis
Acraea althoffi
Acraea leucographa
Cyrestis camillus camillus
Phalanta eurytis
Neptis clarei
Charaxes etesipe gordoni
Anthene larydas
Spalgis lemolea
Bicyclus jefferyi
Etc…. etc…

Mouth watering, hey!

Our next sortie was to The Hairy Lemon which is on an island in the Nile River. C'est la vie!
Sponsor Members of LEPSOC

The following members, apart from their significant contributions to the Society as individuals, have also chosen to be sponsor members for 2008 and have through their generosity provided significant financial support which is much appreciated:

Dr. Jonathan Ball
Leila Campbell Serenity Forest Eco Reserve
Dr. Bennie Coetzer
Steve Collins
Alf Curle
Martin Curle
Jeremy Dobson
Dr. Dave Edge
Owen Garvie
Tim Gilbert
Glynis Hardy
Graham Henning
Dr. Doug Kroon
Dave McDermott
Duncan McFadyen cc (E. Oppenheimer & Son)
Andrew Morton
Ian Richardson
Harald Selb
Peter Sharland
Hermann Staude
Reinier Terblanche
Prof. Mark Williams

Any member can volunteer to become a sponsor member on an annual basis and make a contribution of R600. As the Society does need all the financial support it can get it is hoped that more members will select to become sponsor members in the future. Donations to the Society will also be most welcome.
EDITORIAL POLICY

Manuscripts dealing with any aspect of the study of Afrotropical Lepidoptera will be considered.

Manuscripts not conforming to the instructions below may be rejected and returned to the author. All manuscripts of scientific papers will be evaluated by at least one reviewer. Proofs will be returned to the author if necessary, and only printer’s errors may be corrected. Ten (10) offprints are provided free to the author or senior author on request. Authors should contact the editor to enquire if the software that they are using can be converted by the editor, as the situation changes constantly. Additional offprint numbers can be ordered, at a cost, at the proof stage.

Authors to please supply greyscale scans @ 300 DPI of illustrations & photographs for the black & white text pages and colour scans @ 300 DPI for colour plates & covers (saved in JPEG format) from the original hard copy artwork (high resolution digital photographs are preferable), the manuscript on CD or E-Mail in a word processing format with the figures & photographs placed in position (contact the editor to enquire which software package/s are being used) and if possible extra digital photographs that can be used to illustrate the manuscript (to be used – space permitting). Please send E-Mail to kruger@nfi.museum or post to Martin Krüger, The Editor, P. O. Box 413, Pretoria 0001, South Africa.

Should electronic means not be available; Figures must be boldly drawn in black waterproof ink, and arranged in a clear and logical way on stiff, white, preferably A4-sized board. All the figures must be numbered in a common sequence in Arabic numerals, irrespective of whether they are line drawings, photographs, diagrams, graphs or maps. Magnifications should be indicated by scale bars on the figures.

Any opinions expressed in Metamorphosis are those of the contributors and not of the editor or the Lepidopterists’ Society of Africa.

Authors are bound by the rules and regulations of the most recent edition of the International Code of Zoological Nomenclature. Additional, expanded author’s instructions are available on request from the editor.

NOTE: The International Code of Zoological Nomenclature (ICZN), Ed. 4, states that infrasubspecific names applied to a taxon are invalid and have no standing in terms of the Code. However, some forms and aberrations - curiosities - are of general interest to our readership. Articles utilising such terms may occasionally be published in Metamorphosis; however, this does not imply that Metamorphosis or the editor accept or endorse such descriptions. To the contrary, these names remain invalid, and should not be italicised when in print and when applied to a particular “taxon” of infrasubspecific status.

COPYRIGHT: All copyright for contributions published in this journal belongs to Metamorphosis and/or the individual contributor, but authors bear sole responsibility for the factual accuracy of their articles. Text extracts may be used with prior, written permission from the editor and the author. The journal name, volume, number and date of publication must be acknowledged together with the author and title of the article.